留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏偏最小二乘的麻醉意识状态功能连接研究

吴帆 姜忠义 毕卉 张军 李世通 邹凌

吴帆, 姜忠义, 毕卉, 张军, 李世通, 邹凌. 基于稀疏偏最小二乘的麻醉意识状态功能连接研究[J]. 机械工程学报, 2020, 37(3): 419-426. doi: 10.7507/1001-5515.201904052
引用本文: 吴帆, 姜忠义, 毕卉, 张军, 李世通, 邹凌. 基于稀疏偏最小二乘的麻醉意识状态功能连接研究[J]. 机械工程学报, 2020, 37(3): 419-426. doi: 10.7507/1001-5515.201904052
Fan WU, Zhongyi JIANG, Hui BI, Jun ZHANG, Shitong LI, Ling ZOU. Study of functional connectivity during anesthesia based on sparse partial least squares[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 419-426. doi: 10.7507/1001-5515.201904052
Citation: Fan WU, Zhongyi JIANG, Hui BI, Jun ZHANG, Shitong LI, Ling ZOU. Study of functional connectivity during anesthesia based on sparse partial least squares[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 419-426. doi: 10.7507/1001-5515.201904052

基于稀疏偏最小二乘的麻醉意识状态功能连接研究

doi: 10.7507/1001-5515.201904052
详细信息
    通讯作者:

    邹凌,Email:zouling@cczu.edu.cn

Study of functional connectivity during anesthesia based on sparse partial least squares

More Information
  • 摘要: 麻醉意识状态监测是神经科学基础研究及临床应用中的重要问题,受到广泛关注。本研究为寻找临床麻醉意识状态监测指标,共采集 14 位全麻手术患者在三种意识状态(清醒、中度麻醉、深度麻醉)下各 5 min 静息态脑电数据,对比采用稀疏偏最小二乘(SPLS)和传统的同步似然(SL)方法计算脑功能连接,通过连接特征来区分麻醉前后三种意识状态。通过全脑网络分析,本文 SPLS 方法与传统 SL 方法得到的不同意识状态下的网络参数变化趋势一致,并且采用 SPLS 方法所得结果的差异具有统计学意义(P<0.05)。对 SPLS 方法得到的连接特征运用支持向量机进行分类,分类准确率为 87.93%,较使用 SL 方法得到的连接特征分类准确率高出 7.69%。本文研究结果显示,基于 SPLS 方法进行功能连接分析在区分三种意识状态方面有更好的性能,或可为临床麻醉监测提供一种新思路。

     

  • 图  70 导联电极分布

    Figure  1.  Electrode distribution of 70-channel map

    图  分类流程

    Figure  2.  Classification process

    图  SPLS 均方误差

    Figure  3.  MSE of SPLS

    图  连接矩阵

    Figure  4.  Connectivity heatmaps

    图  连接拓扑图

    Figure  5.  Connection topology

    图  不同脑区平均连接值(*P < 0.05)

    Figure  6.  Average connectivity value of different brain regions(*P < 0.05)

    图  交叉验证各折 ROC 曲线

    Figure  7.  Each folding ROC curve of cross-validation

    表  1  效应室浓度

    Table  1.   Effect-site concentration

    意识状态 效应室浓度/(μg﹒mL−1
    开始 结束
    清醒 0 0
    中度麻醉 1.2 1.2
    深度麻醉 4.0 4.1
    下载: 导出CSV

    表  2  网络参数

    Table  2.   Network parameters

    意识状态 SL SPLS
    C L C L
    清醒 0.780 ± 0.053 1.338 ± 0.096 0.531 ± 0.037 5.292 ± 0.921
    中度麻醉 0.734 ± 0.092 1.468 ± 0.161 0.529 ± 0.046 5.826 ± 0.612
    深度麻醉 0.697 ± 0.028 1.514 ± 0.071 0.492 ± 0.068 6.324 ± 0.797
    P 0.377 0.102 0.032 0.008
    下载: 导出CSV

    表  3  分类结果比较

    Table  3.   Comparison of classification results

    功能连接计算方法 主成分个数 分类准确率
    SL 21 80.24%
    SPLS 25 87.93%
    下载: 导出CSV
  • [1] Cascella M, Schiavone V, Muzio M R, et al. Consciousness fluctuation during general anesthesia: a theoretical approach to anesthesia awareness and memory modulation. Curr Med Res Opin, 2016, 32(8): 1351-1359. doi: 10.1080/03007995.2016.1174679
    [2] Shanks A M, Avidan M S, Kheterpal S, et al. Alerting thresholds for the prevention of intraoperative awareness with explicit recall: a secondary analysis of the michigan awareness control study. Eur J Anaesthesiol, 2015, 32(5): 346-353. doi: 10.1097/EJA.0000000000000123
    [3] Matsushita S, Oda S, Otaki K, et al. Change in auditory evoked potential index and bispectral index during induction of anesthesia with anesthetic drugs. J Clin Monit Comput, 2015, 29(5): 621-626. doi: 10.1007/s10877-014-9643-x
    [4] Punjasawadwong Y, Chau-In W, Laopaiboon M, et al. Processed electroencephalogram and evoked potential techniques for amelioration of postoperative delirium and cognitive dysfunction following non-cardiac and non-neurosurgical procedures in adults. Cochrane Database of Systematic Reviews, 2018(5): 1-58.
    [5] Purdon P L, Sampson A, Pavone K J, et al. Clinical electroencephalography for anesthesiologists part I: background and basic signatures. Anesthesiology, 2015, 123(4): 937-960. doi: 10.1097/ALN.0000000000000841
    [6] 康芳, 方才. BIS、AEP 用于全身麻醉深度监测临床价值评估. 安徽医学, 2007, 28(3): 275-277. doi: 10.3969/j.issn.1000-0399.2007.03.051
    [7] 王之遥, 张军. 意识与脑功能连接性: 麻醉药物作用机制的研究进展. 国际麻醉学与复苏杂志, 2012, 33(10): 696-700. doi: 10.3760/cma.j.issn.1673-4378.2012.10.011
    [8] Long Jinyi, Xie Qiuyou, Ma Qing, et al. Distinct interactions between fronto-parietal and default mode networks in impaired consciousness. Sci Rep, 2016, 6: 38866. doi: 10.1038/srep38866
    [9] Allen E A, Damaraju E, Eichele T, et al. EEG signatures of dynamic functional network connectivity states. Brain Topogr, 2018, 31(1): 101-116. doi: 10.1007/s10548-017-0546-2
    [10] Fraga González G, Smit D J A, van der Molen M J W, et al. EEG resting state functional connectivity in adult dyslexics using phase lag index and graph analysis. Front Hum Neurosci, 2018, 12: 341.
    [11] Rosales F, García-Dopico A, Bajo R, et al. An efficient implementation of the synchronization likelihood algorithm for functional connectivity. Neuroinformatics, 2015, 13(2): 245-258. doi: 10.1007/s12021-014-9251-4
    [12] Wong K K K. Mediation analysis, categorical moderation analysis, and higher-order constructs modeling in partial least squares structural equation modeling (PLS-SEM): A B2B example using SmartPLS. Marketing Bulletin, 2016, 26: 1-22.
    [13] Lee D, Lee W, Lee Y, et al. Sparse partial least-squares regression and its applications to high-throughput data analysis. Chemometrics and Intelligent Laboratory Systems, 2011, 109(1): 1-8. doi: 10.1016/j.chemolab.2011.07.002
    [14] Monteiro J M, Rao A, Shawe-Taylor J, et al. A multiple hold-out framework for sparse partial least squares. J Neurosci Methods, 2016, 271: 182-194. doi: 10.1016/j.jneumeth.2016.06.011
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  97
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-22
  • 修回日期:  2020-03-08
  • 发布日期:  2020-03-17

目录

    /

    返回文章
    返回