A preliminary study on schizophrenia of distinct antipsychotic response based on diffusion tensor imaging
-
摘要: 本文旨在探索首发未用药状态下,抗精神病药物治疗不同反应的精神分裂症患者白质参数是否存在不同模式的改变。采集 60 例首发未用药精神分裂症患者(药物治疗有效者 39 例,难治者 21 例)与 69 例年龄、性别匹配的健康对照的磁共振弥散张量成像(DTI)数据,运用 FSL 软件进行数据处理,提取反映白质微结构完整性的参数并进行确定性的纤维追踪,并基于纤维追踪的结果构建网络矩阵,通过方差分析比较三组间白质参数及白质连接网络拓扑属性的差异。结果发现相比于健康对照,药物治疗有效组白质异常主要表现在丘脑前辐射、胼胝体压部、扣带束和上纵束,而药物难治组白质异常主要分布在丘脑前辐射、扣带束、穹隆和脑桥交叉纤维束。药物难治组在丘脑前辐射表现出比药物治疗有效组更严重的白质异常。此外,三组被试之间白质连接网络拓扑属性差异无统计学意义。支持向量机(SVM)的结果显示两个患者亚组之间分类的准确度为 63.37%(P = 0.04)。该研究表明精神分裂症抗精神病药物治疗不同反应者存在不同模式的白质微结构完整性损伤,这对基线未用药状态下区分和治疗不同反应患者、改善患者预后具有指导作用。
-
关键词:
- 精神分裂症 /
- 弥散张量成像 /
- 基于纤维束的空间统计分析 /
- 治疗结果
Abstract: The study aims to investigate whether there is difference in pre-treatment white matter parameters in treatment-resistant and treatment-responsive schizophrenia. Diffusion tensor imaging (DTI) was acquired from 60 first-episode drug-naïve schizophrenia (39 treatment-responsive and 21 treatment-resistant schizophrenia patients) and 69 age- and gender-matched healthy controls. Imaging data was preprocessed via FSL software, then diffusion parameters including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were extracted. Besides, structural network matrix was constructed based on deterministic fiber tracking. The differences of diffusion parameters and topology attributes between three groups were analyzed using analysis of variance (ANOVA). Compared with healthy controls, treatment-responsive schizophrenia showed altered white matter mainly in anterior thalamus radiation, splenium of corpus callosum, cingulum bundle as well as superior longitudinal fasciculus. While treatment-resistant schizophrenia patients showed white matter abnormalities in anterior thalamus radiation, cingulum bundle, fornix and pontine crossing tract relative to healthy controls. Treatment-resistant schizophrenia showed more severe white matter abnormalities in anterior thalamus radiation compared with treatment-responsive patients. There was no significant difference in white matter network topological attributes among the three groups. The performance of support vector machine (SVM) showed accuracy of 63.37% in separating the two patient subgroups (P = 0.04). In this study, we showed different patterns of white matter alterations in treatment-responsive and treatment-resistant schizophrenia compared with healthy controls before treatment, which may help guiding patient identification, targeted treatment and prognosis improvement at baseline drug-naïve state. -
图 1 三组受试者组间白质参数的差异
a. 药物治疗有效组患者相对于健康对照组降低的 FA;b. 药物难治组患者相对于健康对照降低的 FA;c. 药物治疗有效组患者相对于药物难治组患者增加的 FA;d. 药物治疗有效组相对于健康对照组增高的 RD。红-黄色标记为 FA(图 a,b,c),蓝-绿标记为 RD(图 d),彩色条显示组间差异的相应纤维体素经过 FWE 校正以后的 1-P 值
Figure 1. White matter parameter differences between the three groups
a. reduced FA in treatment-responsive patients relative to healthy controls; b. reduced FA in treatment-resistant patients relative to healthy controls; c. increased FA in treatment-responsive patients relative to treatment-resistant patients; d. increased RD in treatment-responsive patients relative to healthy controls. Red-yellow labels indicate FA (Fig a, b and c), blue-green labels indicate RD (Fig d), and color-bar indicates 1-P value after FWE correction of fiber voxels between group comparison
表 1 人口学及临床资料
Table 1. Demographical and clinical information
项目 治疗有效者
($ \bar x$ ± s,n = 39)药物难治者
($ \bar x$ ± s,n = 21)健康对照
($ \bar x$ ± s,n = 69)F(t)或
χ2 值P 值 年龄/岁 24.21 ± 7.67 24.33 ± 9.36 24.52 ± 8.37 0.02 0.98a 性别(男/女) 14/25 11/10 29/40 1.53 0.47b 教育年限/年 13.08 ± 2.69 11.76 ± 2.72 12.98 ± 2.17 2.41 0.09a 基线 GAF 29.77 ± 10.34 26.00 ± 7.18 — 1.49 0.14c 基线 PANSS 总分 98.82 ± 16.63 99.29 ± 17.34 — −0.10 0.92c 基线 PANSS 阳性症状评分 25.79 ± 6.63 23.38 ± 6.14 — 1.41 0.17c 基线 PANSS 阴性症状评分 17.64 ± 7.02 20.38 ± 7.55 — −1.37 0.18c 基线 PANSS 一般症状评分 47.38 ± 7.55 48.14 ± 9.57 — −0.31 0.76c 随访 PANSS 总分 42.42 ± 9.43 70.21 ± 18.73 — −7.61 <0.01c 随访 PANSS 阳性症状评分 8.41 ± 2.78 15.89 ± 7.01 — −5.83 <0.01c 随访 PANSS 阴性症状评分 11.41 ± 4.24 16.84 ± 5.08 — −4.29 <0.01c 随访 PANSS 一般症状评分 22.23 ± 4.99 36.74 ± 10.79 — −7.04 <0.01c a:方差分析 P 值;b:χ2 检验 P 值;c:双样本 t 检验 P 值 表 2 不同被试组网络和节点拓扑属性曲线下面积(
$\overline {{x}} \;{b\text{±}}\; {{s}}$ )比较Table 2. Area under curve (
$\overline {{x}} \;{b\text{±}}\; {{s}}$ ) comparisons of network and nodal topological properties between groups指标 治疗有效者 药物难治者 正常对照 F 值 P 值 σ 0.079 ± 0.009 0.079 ± 0.009 0.079 ± 0.011 0.014 0.986 γ 0.083 ± 0.010 0.083 ± 0.010 0.083 ± 0.012 0.012 0.988 λ 0.042 ± 0.000 0.042 ± 0.000 0.042 ± 0.001 0.118 0.888 Cp 0.157 ± 0.001 0.156 ± 0.001 0.155 ± 0.002 0.288 0.750 Lp 0.814 ± 0.001 0.820 ± 0.001 0.816 ± 0.001 2.150 0.121 节点效率 0.020 ± 0.000 0.020 ± 0.000 0.020 ± 0.000 2.215 0.113 节点介数 2.275 ± 0.073 2.252 ± 0.086 2.255 ± 0.095 0.800 0.451 节点度 0.463 ± 0.000 0.463 ± 0.000 0.463 ± 0.000 0.413 0.663 -
[1] Sawa A, Snyder S H. Schizophrenia: diverse approaches to a complex disease. Science, 2002, 296(5568): 692-695. doi: 10.1126/science.1070532 [2] Nakajima S, Takeuchi H, Plitman E, et al. Neuroimaging findings in treatment-resistant schizophrenia: A systematic review: Lack of neuroimaging correlates of treatment-resistant schizophrenia. Schizophr Res, 2015, 164(1-3): 164-175. doi: 10.1016/j.schres.2015.01.043 [3] Jeon S W, Kim Y K. Unresolved issues for utilization of atypical antipsychotics in schizophrenia: Antipsychotic Polypharmacy and metabolic syndrome. Int J Mol Sci, 2017, 18(10). DOI: 10.3390/ijms18102174. [4] Park H J, Friston K. Structural and functional brain networks: from connections to cognition. Science, 2013, 342(6158): 1238411. doi: 10.1126/science.1238411 [5] Zhao X, Sui Y, Yao J, et al. Reduced white matter integrity and facial emotion perception in never-medicated patients with first-episode schizophrenia: A diffusion tensor imaging study. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 77: 57-64. doi: 10.1016/j.pnpbp.2017.03.025 [6] 苟辉亮, 黎胜强, 覃颖. 精神分裂症患者脑白质纤维扩散张量成像测量方法研究. 磁共振成像, 2016, 7(3): 161-166. [7] Li F, Lui S, Yao L, et al. Altered white matter connectivity within and between networks in antipsychotic-naive first-episode schizophrenia. Schizophr Bull, 2018, 44(2): 409-418. doi: 10.1093/schbul/sbx048 [8] Mouchlianitis E, Mccutcheon R, Howes O D. Brain-imaging studies of treatment-resistant schizophrenia: a systematic review. Lancet Psychiatry, 2016, 3(5): 451-463. doi: 10.1016/S2215-0366(15)00540-4 [9] Huang J Y, Liu C M, Hwang T J, et al. Shared and distinct alterations of white matter tracts in remitted and nonremitted patients with schizophrenia. Hum Brain Mapp, 2018, 39(5): 2007-2019. doi: 10.1002/hbm.23982 [10] Mori T, Ohnishi T, Hashimoto R, et al. Progressive changes of white matter integrity in schizophrenia revealed by diffusion tensor imaging. Psychiatry Res, 2007, 154(2): 133-145. doi: 10.1016/j.pscychresns.2006.09.004 [11] Wang Q, Cheung C, Deng W, et al. White-matter microstructure in previously drug-naive patients with schizophrenia after 6 weeks of treatment. Psychol Med, 2013, 43(11): 2301-2309. doi: 10.1017/S0033291713000238 [12] Meng L, Li K, Li W, et al. Widespread white-matter microstructure integrity reduction in first-episode schizophrenia patients after acute antipsychotic treatment. Schizophr Res, 2019, 204: 238-244. doi: 10.1016/j.schres.2018.08.021 [13] Ho B C, Andreasen N C, Ziebell S, et al. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry, 2011, 68(2): 128-137. doi: 10.1001/archgenpsychiatry.2010.199 [14] Leucht S, Davis J M, Engel R R, et al. Definitions of response and remission in schizophrenia: recommendations for their use and their presentation. Acta Psychiatr Scand Suppl, 2009, 438: 7-14. [15] Cui Z, Zhong S, Xu P, et al. PANDA: a pipeline toolbox for analyzing brain diffusion images. Front Hum Neurosci, 2013, 7(42). DOI: 10.3389/fnhum.2013.00042. [16] 赵欣, 吴琼, 陈元园, 等. 基于阿尔茨海默病脑结构网络的模式识别分析. 生物医学工程学杂志, 2019, 36(1): 16-23. [17] Fu G, Zhang W, Dai J, et al. Increased peripheral interleukin 10 relate to white matter integrity in schizophrenia. Front Neurosci, 2019, 13(52). DOI: 10.3389/fnins.2019.00052. [18] Demjaha A, Murray R M, Mcguire P K, et al. Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry, 2012, 169(11): 1203-1210. doi: 10.1176/appi.ajp.2012.12010144 [19] Vanes L D, Mouchlianitis E, Collier T, et al. Differential neural reward mechanisms in treatment-responsive and treatment-resistant schizophrenia. Psychol Med, 2018, 48(14): 2418-2427. doi: 10.1017/S0033291718000041 [20] Bubb E J, Metzler-Baddeley C, Aggleton J P. The cingulum bundle: Anatomy, function, and dysfunction. Neurosci Biobehav Rev, 2018, 92: 104-127. doi: 10.1016/j.neubiorev.2018.05.008 [21] Whitford T J, Lee S W, Oh J S, et al. Localized abnormalities in the cingulum bundle in patients with schizophrenia: A Diffusion Tensor tractography study. Neuroimage Clin, 2014, 5: 93-99. doi: 10.1016/j.nicl.2014.06.003 [22] Schaeffer D J, Rodrigue A L, Burton C R, et al. White matter structural integrity differs between people with schizophrenia and healthy groups as a function of cognitive control. Schizophr Res, 2015, 169(1-3): 62-68. doi: 10.1016/j.schres.2015.11.001 [23] Takei K, Yamasue H, Abe O, et al. Disrupted integrity of the fornix is associated with impaired memory organization in schizophrenia. Schizophr Res, 2008, 103(1-3): 52-61. doi: 10.1016/j.schres.2008.03.008 [24] Douet V, Chang L. Fornix as an imaging marker for episodic memory deficits in healthy aging and in various neurological disorders. Front Aging Neurosci, 2014, 6(343). DOI: 10.3389/fnagi.2014.00343. [25] Hovington C L, Bodnar M, Chakravarty M M, et al. Investigation of white matter abnormalities in first episode psychosis patients with persistent negative symptoms. Psychiatry Res, 2015, 233(3): 402-408. doi: 10.1016/j.pscychresns.2015.06.017 [26] Fitzsimmons J, Kubicki M, Smith K, et al. Diffusion tractography of the fornix in schizophrenia. Schizophrenia Research, 2009, 107(1): 39-46. doi: 10.1016/j.schres.2008.10.022 [27] Wang L, Yang Y, Chen S, et al. White matter integrity correlates with residual consciousness in patients with severe brain injury. Brain Imaging Behav, 2018, 12(6): 1669-1677. doi: 10.1007/s11682-018-9832-1 [28] Mahon K, Wu J, Malhotra A K, et al. A voxel-based diffusion tensor imaging study of white matter in bipolar disorder. Neuropsychopharmacology, 2009, 34(6): 1590-1600. doi: 10.1038/npp.2008.216 [29] Degnan A, Berry K, Sweet D, et al. Social networks and symptomatic and functional outcomes in schizophrenia: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol, 2018, 53(9): 873-888. doi: 10.1007/s00127-018-1552-8