Indoor simulation training system for brain-controlled wheelchair based on steady-state visual evoked potentials
-
摘要: 脑控轮椅(BCW)是脑-机接口技术的重要应用之一,目前研究表明,模拟控制训练对 BCW 应用具有重要意义。为了在保证安全的情况下提高使用者的 BCW 控制能力,达到促进 BCW 应用的目的,本文基于稳态视觉诱发电位搭建了 BCW 室内模拟训练系统。该系统包括视觉刺激范式设计与实现、脑电信号采集与处理、室内模拟环境建模、路径规划和模拟轮椅控制等。为测试该系统性能,本研究设计了三种室内路径控制任务,共招募 10 名受试者进行为期 5 d 的训练试验。比较训练试验前后结果发现,受试者完成任务一、任务二和任务三时,所用平均命令个数分别下降 29.5%、21.4%、25.4%(P < 0.001),整体所用命令个数平均下降 25.4%( P < 0.001)。试验结果表明,通过本文搭建的室内模拟训练系统对受试者进行训练,能够在一定程度上提高受试者对 BCW 控制的熟练度和操控效率,证明了本文系统的实用性,为促进 BCW 室内应用提供了一个有效的辅助方法。Abstract: Brain-controlled wheelchair (BCW) is one of the important applications of brain-computer interface (BCI) technology. The present research shows that simulation control training is of great significance for the application of BCW. In order to improve the BCW control ability of users and promote the application of BCW under the condition of safety, this paper builds an indoor simulation training system based on the steady-state visual evoked potentials for BCW. The system includes visual stimulus paradigm design and implementation, electroencephalogram acquisition and processing, indoor simulation environment modeling, path planning, and simulation wheelchair control, etc. To test the performance of the system, a training experiment involving three kinds of indoor path-control tasks is designed and 10 subjects were recruited for the 5-day training experiment. By comparing the results before and after the training experiment, it was found that the average number of commands in Task 1, Task 2, and Task 3 decreased by 29.5%, 21.4%, and 25.4%, respectively (P < 0.001). And the average number of commands used by the subjects to complete all tasks decreased by 25.4% ( P < 0.001). The experimental results show that the training of subjects through the indoor simulation training system built in this paper can improve their proficiency and efficiency of BCW control to a certain extent, which verifies the practicability of the system and provides an effective assistant method to promote the indoor application of BCW.
-
表 1 模拟训练试验结果
Table 1. The results of the simulation training experiment
受试者 任务 平均用时/s( $\overline {{x}} \;{\text{±}}\; {{s}}$ )平均命令/个( $\overline {{x}} \;{\text{±}}\; {{s}}$ )碰撞/次 误启动/次 无效命令/个 平均时间优化率 S1 一 376.00 ± 39.76 94.00 ± 9.94 0 0 19 1.21 二 358.68 ± 11.48 89.67 ± 2.87 0 0 5 1.08 三 342.24 ± 28.36 85.56 ± 7.09 0 2 7 1.14 S2 一 441.76 ± 81.64 110.44 ± 20.41 2 0 13 1.42 二 420.00 ± 57.36 105.00 ± 14.34 3 0 23 1.27 三 370.68 ± 49.12 92.67 ± 12.28 1 0 7 1.24 S3 一 370.24 ± 25.92 92.56 ± 6.48 1 1 16 1.19 二 378.24 ± 26.92 94.56 ± 6.73 0 0 15 1.14 三 351.12 ± 26.96 87.78 ± 6.74 0 0 14 1.17 S4 一 380.44 ± 22.40 95.11 ± 5.60 0 0 15 1.22 二 388.44 ± 33.44 97.11 ± 8.36 1 0 26 1.17 三 357.32 ± 25.12 89.33 ± 6.28 1 0 32 1.19 S5 一 376.00 ± 48.48 94.00 ± 12.12 3 1 12 1.21 二 389.32 ± 27.72 97.33 ± 6.93 3 1 8 1.17 三 340.44 ± 20.04 85.11 ± 5.01 2 1 10 1.13 S6 一 400.44 ± 42.92 100.11 ± 10.73 2 1 8 1.28 二 404.44 ± 18.36 101.11 ± 4.59 1 0 25 1.22 三 368.00 ± 43.08 92.00 ± 10.77 3 0 13 1.23 S7 一 406.24 ± 47.28 101.56 ± 11.82 2 0 20 1.30 二 417.32 ± 45.48 104.33 ± 11.37 5 1 30 1.26 三 383.56 ± 47.88 95.89 ± 11.97 3 0 16 1.28 S8 一 408.88 ± 69.44 102.22 ± 17.36 2 0 14 1.31 二 423.12 ± 39.32 105.78 ± 9.83 3 0 31 1.27 三 401.32 ± 53.12 100.33 ± 13.28 3 0 25 1.34 S9 一 415.56 ± 78.76 103.89 ± 19.69 5 0 10 1.33 二 408.44 ± 50.04 102.11 ± 12.51 2 0 15 1.23 三 385.32 ± 48.92 96.33 ± 12.23 0 0 6 1.28 S10 一 400.44 ± 60.72 100.11 ± 15.18 4 0 19 1.28 二 405.32 ± 65.88 101.33 ± 16.47 3 0 18 1.22 三 373.76 ± 56.60 93.44 ± 14.15 1 0 14 1.25 表 2 E1、E2 和 E3 的平均命令个数表(
${\overline {{x}} \;{b\text{±}}\; {{s}}}$ )Table 2. The average number of commands for E1,E2,and E3(
${\overline {{x}} \;{b\text{±}}\; {{s}}}$ )试验
序号平均命令数/个 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 E1 93.44 ± 7.28 120.22 ± 16.84 98.67 ± 4.92 98.78 ± 8.00 99.78 ± 10.40 104.89 ± 9.60 113.44 ± 10.14 116.44 ± 11.44 115.78 ± 10.30 117.33 ± 6.28 E2 93.78 ± 4.58 97.33 ± 9.18 90.67 ± 5.10 93.56 ± 5.88 89.11 ± 6.64 97.00 ± 8.05 96.22 ± 5.21 100.56 ± 8.14 102.78 ± 6.82 91.89 ± 6.77 E3 82.00 ± 4.72 90.56 ± 6.91 85.56 ± 3.40 89.22 ± 5.24 87.56 ± 7.63 91.33 ± 6.87 92.11 ± 5.99 91.33 ± 5.61 83.78 ± 4.41 85.67 ± 4.87 表 3 模拟训练试验问卷综合结果
Table 3. The comprehensive results of the questionnaire in the simulation training experiment
评价指标 E1 E2 E3 脑力需求 较低 较低 低 身体负担 较低 低 低 时间需求 中等 中等 较低 挫败感 较低 低 低 -
[1] Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-computer interface technology: a review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 164-173. doi: 10.1109/TRE.2000.847807 [2] Tanaka K, Matsunaga K, Wang H O. Electroencephalogram-based control of an electric wheelchair. IEEE Trans Robot, 2005, 21(4): 762-766. doi: 10.1109/TRO.2004.842350 [3] Yu Yang, Liu Yadong, Jiang Jun, et al. An asynchronous control paradigm based on sequential motor imagery and its application in wheelchair navigation. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(12): 2367-2375. doi: 10.1109/TNSRE.2018.2881215 [4] Rebsamen B, Guan C, Zhang H, et al. A brain controlled wheelchair to navigate in familiar environments. IEEE Trans Neural Syst Rehabil Eng, 2010, 18(6): 590-598. doi: 10.1109/TNSRE.2010.2049862 [5] Tang Jingsheng, Liu Yadong, Hu Dewen, et al. Towards BCI-actuated smart wheelchair system. Biomed Eng Online, 2018, 17(1): 111. doi: 10.1186/s12938-018-0545-x [6] Diez P F, Müller S T, Mut V A, et al. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface. Med Eng Phys, 2013, 35(8): 1155-1164. doi: 10.1016/j.medengphy.2012.12.005 [7] Müller S T, Celeste W C, Bastos-Filho T F. Brain-computer interface based on visual evoked potentials to command autonomous robotic wheelchair. J Med Biol Eng, 2010, 30(6): 407-416. doi: 10.5405/jmbe.765 [8] Long Jinyi, Li Yuanqing, Wang Hongtao, et al. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Trans Neural Syst Rehabil Eng, 2012, 20(5): 720-729. doi: 10.1109/TNSRE.2012.2197221 [9] Yu Yang, Zhou Zongtan, Liu Yadong, et al. Self-paced operation of a wheelchair based on a hybrid brain-computer interface combining motor imagery and P300 potential. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(12): 2516-2526. doi: 10.1109/TNSRE.2017.2766365 [10] Bi Luzheng, Fan Xinan, Liu Yili. EEG-based brain-controlled mobile robots: a survey. IEEE T Hum-Mach Syst, 2013, 43(2): 161-176. doi: 10.1109/TSMCC.2012.2219046 [11] Leeb R, Friedman D, Müller-Putz G R, et al. Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput Intell Neurosci, 2007(2): 79642. [12] Gentiletti G G, Gebhart J G, Acevedo R C, et al. Command of a simulated wheelchair on a virtual environment using a brain-computer interface. IRBM, 2009, 30(5): 218-225. [13] Huang Dandan, Qian Kai, Fei Dingyu, et al. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Trans Neural Syst Rehabil Eng, 2012, 20(3): 379-388. doi: 10.1109/TNSRE.2012.2190299 [14] Velasco-Álvarez F, Ron-Angevin R, Silva-Sauer L D, et al. Audio-cued motor imagery-based brain-computer interface: navigation through virtual and real environments. Neurocomputing, 2013, 121: 89-98. doi: 10.1016/j.neucom.2012.11.038 [15] Herweg A, Gutzeit J, Kleih S, et al. Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation. Biol Psychol, 2016, 121(Pt A): 117-124. [16] Yu Tianyou, Xiao Jun, Wang Fangyi, et al. Enhanced motor imagery training using a hybrid BCI with feedback. IEEE Trans Biomed Eng, 2015, 62(7): 1706-1717. doi: 10.1109/TBME.2015.2402283 [17] Baykara E, Ruf C A, Fioravanti C, et al. Effects of training and motivation on auditory P300 brain-computer interface performance. Clin Neurophysiol, 2016, 127(1): 379-387. doi: 10.1016/j.clinph.2015.04.054 [18] Wan Feng, Cruz J D, Nan Wenya, et al. Alpha neurofeedback training improves SSVEP-based BCI performance. J Neural Eng, 2016, 13(3): 036019. doi: 10.1088/1741-2560/13/3/036019 [19] Rose F D, Attree E A, Brooks B M, et al. Training in virtual environments: transfer to real world tasks and equivalence to real task training. Ergonomics, 2000, 43(4): 494-511. doi: 10.1080/001401300184378 [20] Kenyon R V, Afenya M B. Training in virtual and real environments. Ann Biomed Eng, 1995, 23(4): 445-455. doi: 10.1007/BF02584444 [21] Holden M K. Virtual environments for motor rehabilitation: review. Cyberpsychol Behav, 2005, 8(3): 187-211. doi: 10.1089/cpb.2005.8.187 [22] Todorov E, Shadmehr R, Bizzi E. Augmented feedback presented in a virtual environment accelerates learning of a difficult motor task. J Mot Behav, 1997, 29(2): 147-158. doi: 10.1080/00222899709600829 [23] Vialatte F B, Maurice M, Dauwels J, et al. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol, 2010, 90(4): 418-438. doi: 10.1016/j.pneurobio.2009.11.005 [24] Chen Xiaogang, Chen Zhikai, Gao Shangkai, et al. A high-ITR SSVEP-based BCI speller. Brain-Computer Interfaces, 2014, 1(3-4): 181-191. doi: 10.1080/2326263X.2014.944469 [25] Pastor M A, Artieda J, Arbizu J, et al. Human cerebral activation during steady-state visual-evoked responses. J Neurosci, 2003, 23(37): 11621-11627. doi: 10.1523/JNEUROSCI.23-37-11621.2003 [26] Chen Xiaogang, Wang Yijun, Gao Shangkai, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J Neural Eng, 2015, 12(4): 046008. doi: 10.1088/1741-2560/12/4/046008 [27] Lin Zhonglin, Zhang Changshui, Wu Wei, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng, 2007, 54(6): 1172-1176. doi: 10.1109/TBME.2006.889197 [28] 陈小刚, 赵秉, 刘明, 等. 稳态视觉诱发电位脑-机接口控制机械臂系统的设计与实现. 生物医学工程与临床, 2018, 22(3): 20-26. [29] 陈若男, 文聪聪, 彭玲, 等. 改进 A*算法在机器人室内路径规划中的应用. 计算机应用, 2019, 39(4): 1006-1011. doi: 10.11772/j.issn.1001-9081.2018091977 [30] Iturrate I, Antelis J M, Kubler A, et al. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans Robot, 2009, 25(3): 614-627. doi: 10.1109/TRO.2009.2020347