[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
|
[2] |
Zeng Dongqiang, Li Meiyi, Zhou Rui, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res, 2019, 7(5): 737-750. doi: 10.1158/2326-6066.CIR-18-0436
|
[3] |
Chandler K B, Costello C E, Rahimi N. Glycosylation in the tumor microenvironment: implications for tumor angiogenesis and metastasis. Cells, 2019, 8(6): 544. doi: 10.3390/cells8060544
|
[4] |
许成云, 倪庆桂, 张陆勇. 肿瘤微环境与肿瘤血管新生. 中国医疗前沿: 上半月, 2009, 4(5): 21-23, 90.
|
[5] |
Shojaei F. Anti-angiogenesis therapy in cancer: Current challenges and future perspectives. Cancer Lett, 2012, 320(2): 130-137. doi: 10.1016/j.canlet.2012.03.008
|
[6] |
Cheng X K, Lin W R, Jiang H, et al. MicroRNA-129-5p inhibits invasiveness and metastasis of lung cancer cells and tumor angiogenesis via targeting VEGF. Eur Rev Med Pharmaco, 2019, 23(7): 2827-2837.
|
[7] |
Mirzaei S, Baghaei K, Parivar K, et al. The expression level changes of microRNAs 200a/205 in the development of invasive properties in gastric cancer cells through epithelial-mesenchymal transition. Eur J Pharmacol, 2019, 857: 172426. doi: 10.1016/j.ejphar.2019.172426
|
[8] |
殷晓丽, 刘兆玉. 上皮间质转化在肿瘤中的研究进展. 医学综述, 2017, 23(12): 2359-2363, 2369. doi: 10.3969/j.issn.1006-2084.2017.12.015
|
[9] |
Assani G, Zhou Yunfeng. Effect of modulation of epithelial-mesenchymal transition regulators Snail1 and Snail2 on cancer cell radiosensitivity by targeting of the cell cycle, cell apoptosis and cell migration/invasion. Oncol Lett, 2019, 17(1): 23-30.
|
[10] |
张彦璐, 陈影, 应国清. 上皮间质转化在肿瘤侵袭转移中的研究进展. 浙江化工, 2019, 50(7): 11-15. doi: 10.3969/j.issn.1006-4184.2019.07.003
|
[11] |
Campbell K. Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis. Curr Opin Cell Biol, 2018, 55: 30-35. doi: 10.1016/j.ceb.2018.06.008
|
[12] |
贾皑, 张璐, 任莉, 等. EMT 分子标志物在肝癌细胞系中的表达及其意义. 西安交通大学学报: 医学版, 2019, 40(4): 537-541.
|
[13] |
Su Shan, Lin Xueyan, Ding Ning, et al. Effects of PARP-1 inhibitor and ERK inhibitor on epithelial mesenchymal transitions of the ovarian cancer SKOV3 cells. Pharmacol Rep, 2016, 68(6): 1225-1229. doi: 10.1016/j.pharep.2016.08.001
|
[14] |
Sun Jingjing, Stathopoulos A. FGF controls epithelial-mesenchymal transitions during gastrulation by regulating cell division and apicobasal polarity. Development, 2018, 145(19): dev161927. doi: 10.1242/dev.161927
|
[15] |
Kalcheim C. Epithelial-mesenchymal transitions during neural crest and somite development. J Clin Med, 2015, 5(1): 1. doi: 10.3390/jcm5010001
|
[16] |
Ding Qiang, Xia Yujia, Ding Shuping, et al. Potential role of CXCL9 induced by endothelial cells/CD133+ liver cancer cells co-culture system in tumor transendothelial migration. Genes Cancer, 2016, 7(7/8): 254-259.
|
[17] |
Kuang Youlin, He Weiyang, Liang Simin, et al. Prostaglandin E2 inhibits prostate cancer progression by countervailing tumor microenvironment-induced impairment of dendritic cell migration through LXR alpha/CCR7 pathway. J Immunol Res, 2018, 2018: 5808962.
|
[18] |
Lacal P M, Graziani G. Therapeutic implication of vascular endothelial growth factor receptor-1(VEGFR-1) targeting in cancer cells and tumor microenvironment by competitive and non-competitive inhibitors. Pharmacol Res, 2018, 136: 97-107. doi: 10.1016/j.phrs.2018.08.023
|
[19] |
Costanza B, Rademaker G, Tiamiou A, et al. Transforming growth factor beta-induced, an extracellular matrix interacting protein, enhances glycolysis and promotes pancreatic cancer cell migration. Int J Cancer, 2019, 145(6): 1570-1584. doi: 10.1002/ijc.32247
|
[20] |
沈良华, 吴璐华, 张仙丽, 等. PTBP1 通过 EMT 途径促进肝癌细胞的迁移与侵袭. 中国病理生理杂志, 2019, 35(10): 1819-1825.
|
[21] |
Ye Zhiyu, Chen Xudong, Chen Xiaogang. ARK5 promotes invasion and migration in hepatocellular carcinoma cells by regulating epithelial-mesenchymal transition. Oncol Lett, 2018, 15(2): 1511-1516.
|
[22] |
Zuo Jianhong, Wen Juan, Lei Mingsheng, et al. Hypoxia promotes the invasion and metastasis of laryngeal cancer cells via EMT. Med Oncol, 2016, 33(2): 15. doi: 10.1007/s12032-015-0716-6
|
[23] |
董保龙, 韩彩文, 史明, 等. 波形蛋白在肝细胞癌中的研究进展. 基础医学与临床, 2020, 40(2): 238-242. doi: 10.3969/j.issn.1001-6325.2020.02.020
|
[24] |
Rawal P, Siddiqui H, Hassan M, et al. Endothelial cell-derived TGF-beta promotes epithelial-mesenchymal transition via CD133 in HBx-infected hepatoma cells. Front Oncol, 2019, 9: 308. doi: 10.3389/fonc.2019.00308
|
[25] |
张霞, 李惠萍. 上皮间质转化的分子标志物. 国际呼吸杂志, 2012, 32(17): 1358-1361. doi: 10.3760/cma.j.issn.1673-436X.2012.017.019
|
[26] |
徐晓强, 郭佳, 关锋. 膀胱癌细胞 YTS-1 的条件培养基诱导膀胱上皮细胞 HCV29 发生上皮间质转化和糖链表达变化. 生物学杂志, 2018, 35(5): 23-27. doi: 10.3969/j.issn.2095-1736.2018.05.023
|
[27] |
谢雨潇, 廖锐, 潘龙, 等. 肝星状细胞条件培养基激活 ERK1/2 通路诱导肝癌细胞增殖及上皮间质转化. 细胞与分子免疫学杂志, 2017, 33(2): 210-214, 219.
|
[28] |
Zhuang J, Lu Q, Shen B, et al. TGFbeta1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep, 2015, 5: 11924. doi: 10.1038/srep11924
|
[29] |
雒强. CAF 来源的 exosome 促进前列腺癌细胞上皮间质转化. 天津: 天津医科大学, 2018.
|