球窝型人工腰椎间盘假体研究现状
doi: 10.7507/1001-5515.201909044
A review on the current state of ball-on-socket type artificial lumbar disc prosthesis
-
摘要: 人工腰椎间盘置换术是治疗椎间盘退行性病变、缓解腰背痛的有效方式。球窝型人工腰椎间盘是最常用的假体类型。本文回顾了球窝型人工腰椎间盘假体的历史,综述了金属—聚合物、金属—金属和聚合物—聚合物不同组合配副的球窝型人工腰椎间盘假体产品现状。结合最新研究进展,分析球窝型人工腰椎间盘假体结构设计因素及影响,并对球窝型人工腰椎间盘假体未来的发展加以展望,以期为设计球窝型人工腰椎间盘假体提供更加全面系统的理论参考。Abstract: Total lumbar disc replacement is an alternative to interbody fusion for the effective treatment of symptomatic degenerative disc disease. This paper reviewed the history of ball-on-socket type artificial lumbar disc (ALD) prosthesis, which is a typical ALD prosthesis and summarized the ALD prosthesis research progress, according to different materials such as metal-on-metal, metal-on-polymer, and polymer-on-polymer prosthesis. The structural design factors of ball-on-socket type ALD prosthesis were analyzed and its prospect of development was also presented. The purpose of this paper is to provide a theoretical reference for the design of the ball-on-socket ALD prosthesis by reviewing the current state of ball-on-socket type ALD prosthesis.
-
Key words:
- artificial lumbar disc /
- ball-on-socket /
- prosthesis /
- current state
-
表 1 人工腰椎间盘假体产品现状
Table 1. Artificial lumbar disc prosthesis product status
配副 材料 产品 制造商 自由度 关节面 球窝位置 形状 状态 MoP CoCr-UHMWPE Charité DePuy Synthes Spine,Raynham,MA,USA 5 移动 中间 椭圆形 FDA 批准-2004 ProDisc-L DePuy Synthes Spine,Raynham,MA,USA 3 固定 中间 D 字形 FDA 批准-2006 Activ-L Aesculap AG,Tuttlingen,Germany 4 移动 中间 D 字形 FDA 批准-2015 Mobidisc-L Zimmer Biomet,Warsaw,IN,USA 5 移动 中间 椭圆形 — Ti-PE Baguera-L SpineArt,Geneva,Switzerland 4 或 6 可选 中间 D 字形 未被 FDA 批准 MoM CoCr-CoCr Maverick Medtronic,Memphis,TN,USA 3 固定 后置 D 字形 IDE 试验完成 Flexicore Stryker Spine,Allendale,NJ,USA 3 限制 中间 D 字形 — Kineflex Southern Medical(Pty)Ltd.,Irene,South Africa 5 移动 后置 椭圆形 IDE 试验终止 XL TDR NuVasive,Inc.,San Diego,CA,USA 3 固定 后置 长方形 IDE 试验阶段 TRIUMPH Globus Medical,Inc.,Audubon,PA,USA 3 固定 后置 长方形 IDE 试验阶段 PoP PEEK-PEEK InOrbitTM Globus Medical,Inc.,Audubon,PA,USA 3 固定 中间 长方形 — ORBITTM-R Globus Medical,Inc.,Audubon,PA,USA 3 移动 中间 椭圆形 — 注:IDE:医疗器械研究性试验豁免(investigational device exemption);PEEK:聚醚醚酮(polyetheretherketone) 表 2 CoCr-UHMWPE 材料配副假体不同的髓核固定方式
Table 2. Different ways on core fixation of CoCr-UHMWPE type prosthesis
产品 UHMWPE 髓核与 CoCr 合金的相对运动 Charité 髓核自由旋转和滑动 ProDisc-L 髓核完全固定在下终板 Activ-L 髓核固定在下终板上,且前后方向可微小移动 Mobidisc-L 髓核固定在下终板上,且前后左右方向均可微小移动 表 3 不同材料配副的优缺点
Table 3. Advantages and disadvantages of different material pairings
种类 优点 缺点 MoP 聚合物髓核可以起到缓冲吸振作用 聚合物力学性能不足,易破碎。同时聚合物磨屑会导致
骨溶解MoM 金属的磨损性能好,磨损率低,采用后置旋转中心,可以减小
小关节应力金属离子可引起过敏毒性等反应 PoP 聚合物弹性模量低,缓冲吸振 同 MoP 配副 表 4 人工腰椎间盘假体产品设计尺寸规格
Table 4. Design sizes of artificial lumbar disc prosthesis products
产品 高度/mm 角度/(°) 型号 长 × 宽/(mm × mm) ProDisc-L H1 = 10,12,14 3,6,9,11 M,L 34.5 × 27,39 × 30 Activ-L H2 = 8.5,10,12,14 6,11,16 S,M,L,XL 31 × 26,34.5 × 28,39 × 30,40 × 33 Mobidisc-L H1 = 10,11,12,13 5,10 T6,T8(S,M,L) 34 × (27,30,33),39 × (30,33,36) Baguera-L h = 8,10,12 5,10 S,M,L 35 × 27,39 × 30,42 × 31 Maverick H1 = 10,12,14 6,9,12 S,M,L 32 × 25,35 × 27,39 × 30 表 5 人工腰椎间盘假体产品表面生物涂层和固定方式
Table 5. Biological coatings and fixation methods of artificial lumbar disc prosthesis products
产品 表面生物涂层 固定方式 ProDisc-L 多孔钛 上下 2 个脊骨 Activ-L 等离子体钛微孔涂层和微米级磷酸钙层 上下共 6 个尖齿 Mobidisc-L 粗糙钛表面和羟基磷灰石涂层 上下 2 个固定嵌片 Baguera-L 多孔钛 上下共 10 个尖齿 Maverick 羟基磷灰石涂层 上下 2 个脊骨 -
[1] Vos T, Barber R M, Bell B, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet, 2015, 386(9995): 743-800. doi: 10.1016/S0140-6736(15)60692-4 [2] Blackwell D L, Lucas J W, Clarke T C. Summary health statistics for U.S. adults: National Health Interview Survey, 2012. Vital Health Stat, 2014, 260(260):1-171. [3] Song Jian, Liao Zhenhua, Shi Hongyu, et al. Fretting wear study of PEEK-based composites for bio-implant application. Tribol Lett, 2017, 65(4): Article number 150. doi: 10.1007/s11249-017-0931-8 [4] Formica M, Divano S, Cavagnaro L, et al. Lumbar total disc arthroplasty: outdated surgery or here to stay procedure? A systematic review of current literature. J Orthopaed Traumatol, 2017, 18(3): 197-215. doi: 10.1007/s10195-017-0462-y [5] Salzmann S N, Plais N, Shue J, et al. Lumbar disc replacement surgery—successes and obstacles to widespread adoption. Curr Rev Musculoskelet Med, 2017, 10(2): 153-159. doi: 10.1007/s12178-017-9397-4 [6] Radcliff K, Spivak J, Darden B N, et al. Five-year reoperation rates of 2-level lumbar total disk replacement versus fusion: results of a prospective, randomized clinical trial. Clinical Spine Surg, 2018, 31(1): 37-42. doi: 10.1097/BSD.0000000000000476 [7] 张振军, 李阳, 廖振华, 等. 有限元法在腰椎生物力学应用中的研究进展和展望. 生物医学工程学杂志, 2016, 33(6): 1196-1202. doi: 10.7507/1001-5515.20160189 [8] Yue J J, Garcia R, Blumenthal S, et al. Five-year results of a randomized controlled trial for lumbar artificial discs in single-level degenerative disc disease. Spine (Phila Pa 1976), 2019: 1. [9] Bono C M, Garfin S R. History and evolution of disc replacement. Spine J, 2004, 4(6 Suppl): S145-S150. [10] Abi-Hanna D, Kerferd J, Phan K, et al. Lumbar disk arthroplasty for degenerative disk disease: literature review. World Neurosurg, 2018, 109: 188-196. doi: 10.1016/j.wneu.2017.09.153 [11] Reeks J, Liang H. Materials and their failure mechanisms in total disc replacement. Lubricants, 2015, 3(2): 346-364. doi: 10.3390/lubricants3020346 [12] Veruva S Y, Steinbeck M J, Toth J, et al. Which design and biomaterial factors affect clinical wear performance of total disc replacements? A systematic review. Clin Orthop Relat Res, 2014, 472(12): 3759-3769. doi: 10.1007/s11999-014-3751-2 [13] Lu S, Hai Y, Kong C, et al. An 11-year minimum follow-up of the Charite III lumbar disc replacement for the treatment of symptomatic degenerative disc disease. Eur Spine J, 2015, 24(9): 2056-2064. doi: 10.1007/s00586-015-3939-5 [14] van Ooij A, Oner F C, Verbout A J. Complications of artificial disc replacement: A report of 27 patients with the SB Charité disc. J Spinal Disord Tech, 2003, 16(4): 369-383. doi: 10.1097/00024720-200308000-00009 [15] Punt I M, Visser V M, van Rhijn L W, et al. Complications and reoperations of the SB Charite lumbar disc prosthesis: experience in 75 patients. Eur Spine J, 2008, 17(1): 36-43. doi: 10.1007/s00586-007-0506-8 [16] Choi J I, Kim S H, Lim D J, et al. Biomechanical changes in disc pressure and facet strain after lumbar spinal arthroplasty with CHARITETM in the human cadaveric spine under physiologic compressive follower preload. Turk Neurosurg, 2017, 27(2): 252-258. [17] Siepe C J, Heider F, Wiechert K, et al. Mid- to long-term results of total lumbar disc replacement: a prospective analysis with 5- to 10-year follow-up. Spine J, 2014, 14(8): 1417-1431. doi: 10.1016/j.spinee.2013.08.028 [18] Yue J J, Garcia R J, Miller L E. The activL® Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain. Med Dev (Auckl), 2016, 9: 75-84. [19] Girardi F, Shein D, Shue J. Evaluation of aesculap implant systems activ-L artificial disc for the treatment of degenerative disc disease. Expert Rev Med Dev, 2016, 13(12): 1069-1072. doi: 10.1080/17434440.2016.1256771 [20] Mathews H H, LeHuec J, Friesem T, et al. Design rationale and biomechanics of Maverick total disc arthroplasty with early clinical results. Spine J, 2004, 4(6): S268-S275. doi: 10.1016/j.spinee.2004.07.017 [21] Assaker R, Ritter-Lang K, Vardon D, et al. Maverick total disc replacement in a real-world patient population: A prospective, multicentre, observational study. Eur Spine J, 2015, 24(9): 2047-2055. doi: 10.1007/s00586-015-3918-x [22] Bastien J, Lecomte Y, Willems S. A retrospective review of 345 patients with lumbar tdr in two years follow-up over 10 years of practice in one belgian clinical center: Results. Acta Orthopaedica Belgica, 2016, 82(3): 440-455. [23] Pettine K, Ryu R, Techy F. Why lumbar artificial disk replacements (LADRS) fail. Clin Spine Surg, 2017, 30(6): E743-E747. doi: 10.1097/BSD.0000000000000310 [24] Guyer R D, Pettine K, Roh J S, et al. Five-year follow-up of a prospective, randomized trial comparing two lumbar total disc replacements. Spine (Phila Pa 1976), 2016, 41(1): 3-8. doi: 10.1097/BRS.0000000000001168 [25] Malham G M, Parker R M. Early experience with lateral lumbar total disc replacement: Utility, complications and revision strategies. J Clin Neurosci, 2017, 39: 176-183. doi: 10.1016/j.jocn.2017.01.033 [26] Yue J J, Garcia R. Five-year results of a randomized controlled trial for lumbar artificial discs in single-level degenerative disc disease. Spine J, 2017, 17(10): S70. [27] Pokorny G, Marchi L, Amaral R, et al. Lumbar total disc replacement by the lateral approach-up to 10 years follow-up. World Neurosurg, 2019, 122: e325-e333. doi: 10.1016/j.wneu.2018.10.033 [28] Grupp T M, Yue J J, Jr R G, et al. Evaluation of impingement behaviour in lumbar spinal disc arthroplasty. Eur Spine J, 2015, 24(9): 2033-2046. doi: 10.1007/s00586-014-3381-0 [29] Eckold D G, Dearn K D, Shepherd D E T. The evolution of polymer wear debris from total disc arthroplasty. Biotribology, 2015, 1-2: 42-50. [30] Hyde P J, Fisher J, Hall R M. Wear characteristics of an unconstrained lumbar total disc replacement under a range of in vitro test conditions. J Biomed Mater Res Part B Appl Biomater, 2017, 105(1): 46-52. doi: 10.1002/jbm.b.33456 [31] Wenzel S A, Shepherd D E. Contact stresses in lumbar total disc arthroplasty. Biomed Mater Eng, 2007, 17(3): 169-173. [32] Moghadas P, Mahomed A, Hukins D W L, et al. Friction in metal-on-metal total disc arthroplasty: Effect of ball radius. J Biomech, 2012, 45(3): 504-509. doi: 10.1016/j.jbiomech.2011.11.045 [33] Hart R A, DePasse J M, Daniels A H. Failure to launch: what the rejection of lumbar total disk replacement tells us about American spine surgery. Clin Spine Surg, 2017, 30(6): E759-E764. doi: 10.1097/BSD.0000000000000415 [34] Mróz A, Skalski K, Walczyk W. New lumbar disc endoprosthesis applied to the patient's anatomic features. Acta Bioeng Biomech, 2015, 17(2): 25-34. [35] Mróz A, Wiśniewski T, Skalski K. Effect of selective laser melting technology on the tribological properties of the prototype of intervertebral disc endoprothesis. Inżynieria Powierzchni, 2016, 2: 24-30. [36] Mróz A B, Lapaj L, Wisniewski T, et al. Friction and wear of the intervertebral disc endoprosthesis manufactured with use of selective laser melting process. Rapid Prototyping J, 2017, 23(6): 1032-1042. doi: 10.1108/RPJ-11-2015-0171