留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙联蛋白在心肌成纤维细胞活化过程中的作用研究

田格尔 赵明月 周骏腾 权月 吴文超 刘小菁

田格尔, 赵明月, 周骏腾, 权月, 吴文超, 刘小菁. 钙联蛋白在心肌成纤维细胞活化过程中的作用研究[J]. 机械工程学报, 2020, 37(3): 450-459. doi: 10.7507/1001-5515.202001052
引用本文: 田格尔, 赵明月, 周骏腾, 权月, 吴文超, 刘小菁. 钙联蛋白在心肌成纤维细胞活化过程中的作用研究[J]. 机械工程学报, 2020, 37(3): 450-459. doi: 10.7507/1001-5515.202001052
Geer TIAN, Mingyue ZHAO, Junteng ZHOU, Yue QUAN, Wenchao WU, Xiaojing LIU. The potential role of calnexin in the activation of cardiac fibroblasts[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 450-459. doi: 10.7507/1001-5515.202001052
Citation: Geer TIAN, Mingyue ZHAO, Junteng ZHOU, Yue QUAN, Wenchao WU, Xiaojing LIU. The potential role of calnexin in the activation of cardiac fibroblasts[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 450-459. doi: 10.7507/1001-5515.202001052

钙联蛋白在心肌成纤维细胞活化过程中的作用研究

doi: 10.7507/1001-5515.202001052
详细信息
    通讯作者:

    刘小菁,Email:liuxq@scu.edu.cn

The potential role of calnexin in the activation of cardiac fibroblasts

More Information
  • 摘要: 钙联蛋白(Calnexin)是内质网上的凝集素样分子伴侣蛋白,也是线粒体结合内质网膜上的重要蛋白,在心脏疾病中发挥着重要作用,但其在心肌成纤维细胞活化中的作用和机制并未阐明。本研究通过小鼠胸主动脉缩窄(TAC)模型来观察体内心肌纤维化情况,并利用心脏超声,苏木精-伊红、Masson 和天狼星红染色,以及心脏纤维化标志物表达水平,鉴定模型是否成功。体外实验利用转化生长因子 TGFβ1 刺激建立心肌成纤维细胞活化模型,通过定量 PCR、Western blot、EdU 渗入法及划痕实验等方法检测其活化、细胞增殖、迁移的变化。利用腺病毒过表达和沉默 Calnexin,来观察 Calnexin 在体外心肌成纤维细胞活化中的作用。结果显示,Calnexin 在 TAC 模型和体外心肌成纤维细胞活化过程中均表达降低。过表达 Calnexin 能缓解心肌成纤维细胞活化;相反,沉默 Calnexin 导致其活化加重。进一步探究发现,内质网应激在心肌成纤维细胞活化过程中被激活,过表达 Calnexin 后内质网应激缓解,相反,敲低 Calnexin 后内质网应激加重,与活化表型变化一致。结果表明,过表达 Calnexin 可能通过缓解内质网应激从而减轻心肌成纤维细胞的活化程度。

     

  • 图  Calnexin 在小鼠 TAC 模型中的表达降低

    a.心脏重量与体重比值;b.小鼠 TAC 术后超声心动图检测图像;c-g. 超声心动图检测心功能指标;h. 心脏组织病理切片;i. 纤维化指标 mRNA 相对表达量;j. Calnexin 的 mRNA 相对表达量;k. Calnexin 的蛋白相对表达量;l. Calnexin 在 TAC 术后不同时间的 mRNA 相对表达量。n = 6,与 sham 组相比,* P < 0.05,** P < 0.01,*** P < 0.001,**** P < 0.000 1

    Figure  1.  The expression of calnexin was decreased in TAC model of mice

    a. heart weight/body weight; b. representative images of an echocardiographic assessment of mice after TAC; c-g. the cardiac function indicators by echocardiogram; h. the stained sections of hearts; i. the mRNA levels of COL-1 and α-SMA; j. the mRNA level of calnexin; k. the protein level of calnexin; l. the mRNA levels of calnexin with time gradient. n = 6, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.000 1, compared with sham group

    图  Calnexin 在心肌成纤维细胞活化过程中的表达降低

    a. EdU 渗入法检测心肌成纤维细胞的增殖能力;b. 划痕实验检测心肌成纤维细胞的迁移能力;c. 原代心肌成纤维细胞荧光染色;d. 心肌成纤维细胞活化标志物 mRNA 的相对表达量;e. Calnexin 的蛋白相对表达量。n = 6,与对照组相比,* P < 0.05,** P < 0.01,*** P < 0.001,**** P < 0.000 1

    Figure  2.  The expression of calnexin was decreased in activated cardiac fibroblasts

    a. the proliferation rate of cells by EdU staining; b. the migration capability of cardiac fibroblasts by wound healing assay; c. immunofluorescence staining of α-SMA in cardiac fibroblasts; d. the mRNA levels of fibrotic markers; e. the protein level of calnexin. n = 6, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.000 1, compared with control group

    图  过表达 Calnexin 缓解 TGFβ1 诱导的心肌成纤维细胞活化

    a. 腺病毒转导效率检测;b. 过表达 Calnexin 后心肌成纤维细胞活化指标 mRNA 水平变化;c. EdU 渗入法检测心肌成纤维细胞的增殖能力;d. 划痕实验检测心肌成纤维细胞的迁移能力;e. 心肌成纤维细胞荧光染色;f. 心肌成纤维细胞活化标志物 mRNA 的相对表达量。n = 6,* P < 0.05,** P < 0.01,*** P < 0.001,**** P < 0.000 1

    Figure  3.  Calnexin overexpression alleviated the activation of cardiac fibroblasts induced by TGFβ1

    a. the transduction effect of adenovirus; b. the mRNA levels of fibrosis markers; c. the proliferation rate of cells by EdU staining; d. the migration capability of cardiac fibroblasts by wound healing assay; e. immunofluorescence staining of α-SMA in cardiac fibroblasts; f. the mRNA levels of CTGF, α-SMA and TGF-β. n = 6, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.000 1

    图  敲低 Calnexin 加重 TGFβ1 诱导的心肌成纤维细胞活化

    a. 腺病毒转导效率检测;b. 沉默 Calnexin 后心肌成纤维细胞活化指标 mRNA 水平变化;c. EdU 渗入法检测心肌成纤维细胞的增殖能力;d. 划痕实验检测心肌成纤维细胞的迁移能力;e. 心肌成纤维细胞荧光染色;f. 心肌成纤维细胞活化标志物蛋白相对表达量。n = 6,* P < 0.05,** P < 0.01,*** P < 0.001,**** P < 0.000 1

    Figure  4.  Calnexin knockdown aggravated the activation of cardiac fibroblasts induced by TGFβ1

    a. the transduction effect of adenovirus; b. the mRNA levels of fibrosis markers; c. the proliferation rate of cells by EdU staining; d. the migration capability of cardiac fibroblasts by wound healing assay; e. immunofluorescence staining of α-SMA in cardiac fibroblasts; f. the protein levels of CTGF, α-SMA and TGF-β. n = 6, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.000 1

    图  Calnexin 影响 ER stress 来调节 TGFβ1 诱导的心肌成纤维细胞活化

    a. TGFβ1 诱导的心肌成纤维细胞活化激活 ER stress;b. 病毒敲低 Calnexin 后,心肌成纤维细胞中 ER stress 通路蛋白的表达水平;c. 病毒过表达 Calnexin 后,心肌成纤维细胞中 ER stress 通路蛋白的表达水平。* P < 0.05,** P < 0.01,*** P < 0.001

    Figure  5.  Calnexin regulates ER stress in TGFβ1-induced cardiac fibroblasts activation

    a. the protein expression of BIP, p-IRE1α, ATF4, and c-ATF6 with TGFβ1 treatment in cardiac fibroblasts; b. the protein levels of BIP, p-IRE1α, ATF4, and c-ATF6 with sh-adenovirus transduction in cardiac fibroblasts; c. the protein levels of BIP, P-IRE1α, ATF4, and c-ATF6 with overexpression-adenovirus transfection in cardiac fibroblasts. * P < 0.05, ** P < 0.01, *** P < 0.001

    表  1  qPCR 反应使用的引物序列

    Table  1.   The sequences of primers in qPCR

    基因 引物序列
    Calnexin F: ATGGAAGGGAAGTGGTTACTGT
    R: GCTTTGTAGGTGACCTTTGGAG
    α-SMA F: ACAACTGGTATTGTGCTGGACT
    R: TCAGCAGTAGTCACGAAGGAAT
    TGF-β F: TGAGTGGCTGTCTTTTGACG
    R: ACTGAAGCGAAAGCCCTGTA
    COL-1 F: ACGTCCTGGTGAAGTTGGTC
    R: TCCAGCAATACCCTGAGGTC
    CTGF F: CTACCGACTGGAAGACACATTT
    R: TTCCTCTAGGTCAGCTTCACAG
    β-actin F: ACTATCGGCAATGAGCGGTTC
    R: ATGCCACAGGATTCCATACCC
    下载: 导出CSV
  • [1] Li Y, Li Z, Zhang C, et al. Cardiac fibroblast-specific activating transcription factor 3 protects against heart failure by suppressing MAP2K3-p38 signaling. Circulation, 2017, 135(21): 2041-2057. doi: 10.1161/CIRCULATIONAHA.116.024599
    [2] Ranjan P, Kumari R, Verma S K. Cardiac fibroblasts and cardiac fibrosis: Precise role of exosomes. Front Cell Dev Biol, 2019, 7: 318. doi: 10.3389/fcell.2019.00318
    [3] Liu T, Wen H, Li H, et al. Oleic acid attenuates Ang II (angiotensin II)-induced cardiac remodeling by inhibiting FGF23(fibroblast growth factor 23) expression in mice. Hypertension, 2020, 75(3): Hypertensionaha119.14167.
    [4] Horckmans M, Bianchini M, Santovito D, et al. Pericardial adipose tissue regulates granulopoiesis, fibrosis, and cardiac function after myocardial infarction. Circulation, 2018, 137(9): 948-960. doi: 10.1161/CIRCULATIONAHA.117.028833
    [5] Farris S D, Don C, Helterline D, et al. Cell-specific pathways supporting persistent fibrosis in heart failure. J Am Coll Cardiol, 2017, 70(3): 344-354. doi: 10.1016/j.jacc.2017.05.040
    [6] Nomura S, Satoh M, Fujita T, et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat Commun, 2018, 9(1): 4435. doi: 10.1038/s41467-018-06639-7
    [7] Chen S, Zhang Y, Lighthouse J K, et al. A novel role of cyclic nucleotide phosphodiesterase 10A in pathological cardiac remodeling and dysfunction. Circulation, 2020, 141(3): 217-233. doi: 10.1161/CIRCULATIONAHA.119.042178
    [8] Xia P, Wang S, Xiong Z, et al. The ER membrane adaptor ERAdP senses the bacterial second messenger c-di-AMP and initiates anti-bacterial immunity. Nat Immunol, 2018, 19(2): 141-150. doi: 10.1038/s41590-017-0014-x
    [9] Song S, Tan J, Miao Y, et al. Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery. J Cell Physiol, 2018, 233(5): 3867-3874. doi: 10.1002/jcp.26137
    [10] Park S, Lim W, Bazer F W, et al. Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells. J Cell Physiol, 2018, 233(4): 3055-3065. doi: 10.1002/jcp.26054
    [11] Shih Y C, Chen C L, Zhang Y, et al. Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circ Res, 2018, 122(8): 1052-1068. doi: 10.1161/CIRCRESAHA.117.312130
    [12] Yao Y, Lu Q, Hu Z, et al. A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and heart failure. Nat Commun, 2017, 8(1): 133. doi: 10.1038/s41467-017-00171-w
    [13] Pinkaew D, Chattopadhyay A, King M D, et al. Fortilin binds IRE1alpha and prevents ER stress from signaling apoptotic cell death. Nat Commun, 2017, 8(1): 18. doi: 10.1038/s41467-017-00029-1
    [14] Misaka T, Murakawa T, Nishida K, et al. FKBP8 protects the heart from hemodynamic stress by preventing the accumulation of misfolded proteins and endoplasmic reticulum-associated apoptosis in mice. J Mol Cell Cardiol, 2018, 114: 93-104. doi: 10.1016/j.yjmcc.2017.11.004
    [15] Hou X, Fu M, Cheng B, et al. Galanthamine improves myocardial ischemia-reperfusion-induced cardiac dysfunction, endoplasmic reticulum stress-related apoptosis, and myocardial fibrosis by suppressing AMPK/Nrf2 pathway in rats. Ann Transl Med, 2019, 7(22): 634. doi: 10.21037/atm.2019.10.108
    [16] Li J, Zhao Y, Zhou N, et al. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury in diabetes mellitus by inhibiting endoplasmic reticulum stress. J Diabetes Res, 2019, 2019: 7869318.
    [17] Binder P, Wang S, Radu M, et al. Pak2 as a novel therapeutic target for cardioprotective endoplasmic reticulum stress response. Circ Res, 2019, 124(5): 696-711. doi: 10.1161/CIRCRESAHA.118.312829
    [18] Jung J, Eggleton P, Robinson A, et al. Calnexin is necessary for T cell transmigration into the central nervous system. JCI Insight, 2018, 3(5): e98410. doi: 10.1172/jci.insight.98410
    [19] Ryan D, Carberry S, Murphy A C, et al. Calnexin, an ER stress-induced protein, is a prognostic marker and potential therapeutic target in colorectal cancer. J Transl Med, 2016, 14(1): 196. doi: 10.1186/s12967-016-0948-z
    [20] Fan Y, Simmen T. Mechanistic connections between endoplasmic reticulum (ER) redox control and mitochondrial metabolism. Cells, 2019, 8(9): 1071. doi: 10.3390/cells8091071
    [21] Nakao H, Seko A, Ito Y, et al. PDI family protein ERp29 recognizes P-domain of molecular chaperone calnexin. Biochem Biophys Res Commun, 2017, 487(3): 763-767. doi: 10.1016/j.bbrc.2017.04.139
    [22] Lynes E M, Bui M, Yap M C, et al. Palmitoylated TMX and calnexin target to the mitochondria-associated membrane. EMBO J, 2012, 31(2): 457-470. doi: 10.1038/emboj.2011.384
    [23] Lakkaraju A K, Abrami L, Lemmin T, et al. Palmitoylated calnexin is a key component of the ribosome-translocon complex. EMBO J, 2012, 31(7): 1823-1835. doi: 10.1038/emboj.2012.15
    [24] Budd G. On diseases of the liver. 2nd ed. London: John Churchill, 1852.
    [25] Xin Y, Wu W, Qu J, et al. Inhibition of mitofusin-2 promotes cardiac fibroblast activation via the PERK/ATF4 pathway and reactive oxygen species. Oxid Med Cell Longev, 2019, 2019: Article ID 3649808.
    [26] Xu S, Xiao Y, Zeng S, et al. Piperlongumine inhibits the proliferation, migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Inflamm Res, 2018, 67(3): 233-243. doi: 10.1007/s00011-017-1112-9
    [27] Guo Y, Gupte M, Umbarkar P, et al. Entanglement of GSK-3beta, beta-catenin and TGF-beta1 signaling network to regulate myocardial fibrosis. J Mol Cell Cardiol, 2017, 110: 109-120. doi: 10.1016/j.yjmcc.2017.07.011
    [28] Olgar Y, Ozdemir S, Turan B. Induction of endoplasmic reticulum stress and changes in expression levels of Zn2+-transporters in hypertrophic rat heart. Mol Cell Biochem, 2018, 440(1-2): 209-219. doi: 10.1007/s11010-017-3168-9
    [29] Senft D, Ronai Z A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci, 2015, 40(3): 141-148. doi: 10.1016/j.tibs.2015.01.002
    [30] Yuan Y, Zhang Y, Han X, et al. Relaxin alleviates TGFbeta1-induced cardiac fibrosis via inhibition of Stat3-dependent autophagy. Biochem Biophys Res Commun, 2017, 493(4): 1601-1607. doi: 10.1016/j.bbrc.2017.09.110
    [31] Liu X, Shan X, Chen H, et al. Stachydrine ameliorates cardiac fibrosis through inhibition of angiotensin Ⅱ/transformation growth factor beta1 fibrogenic axis. Front Pharmacol, 2019, 10: 538. doi: 10.3389/fphar.2019.00538
    [32] Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-beta-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest, 2017, 127(10): 3770-3783. doi: 10.1172/JCI94753
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  195
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-20
  • 修回日期:  2020-04-17
  • 发布日期:  2020-03-17

目录

    /

    返回文章
    返回