留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型冠状病毒疫苗的研发进展及分析

康庄 唐梅

康庄, 唐梅. 新型冠状病毒疫苗的研发进展及分析[J]. 机械工程学报, 2020, 37(3): 373-379. doi: 10.7507/1001-5515.202004025
引用本文: 康庄, 唐梅. 新型冠状病毒疫苗的研发进展及分析[J]. 机械工程学报, 2020, 37(3): 373-379. doi: 10.7507/1001-5515.202004025
Zhuang KANG, mei TANG. Progress and analysis on the development of 2019-nCoV vaccine[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 373-379. doi: 10.7507/1001-5515.202004025
Citation: Zhuang KANG, mei TANG. Progress and analysis on the development of 2019-nCoV vaccine[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 373-379. doi: 10.7507/1001-5515.202004025

新型冠状病毒疫苗的研发进展及分析

doi: 10.7507/1001-5515.202004025

Progress and analysis on the development of 2019-nCoV vaccine

  • 摘要: 随着新型冠状(简称:新冠)病毒疫情在全球愈演愈烈,越来越多的人们将疫情遏制的希望寄托于新冠病毒疫苗的研发。目前全球已经有多个研究团队,采用了不同的疫苗开发技术路线开展新冠病毒疫苗的研发。本文对目前不同路线新冠疫苗的开发与研究现状进行了综述和分析,同时也探讨了这些不同疫苗今后发展的可能性。

     

  • [1] Chen Nanshan, Zhou Min, Dong Xuan, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(1223): 507-513.
    [2] Wu Fan, Zhao Su, Yu Bin, et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798): 265-269.
    [3] Zhu Na, Zhang Dingyu, Wang Wenling, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med, 2020, 382(8): 727-733.
    [4] Li F, Li W H, Farzan M, et al. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742): 1864-1868.
    [5] Agnihothram S, Gopal R, Yount B L, et al. Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses. J Infect Dis, 2014, 209(7): 995-1006.
    [6] Li Wenhui, Michael J M, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965): 450-454.
    [7] Park W B, Kwon N J, Choi S J, et al. Virus isolation from the first patient with SARS-CoV-2 in Korea. J Korean Med Sci, 2020, 35(7): e84.
    [8] Du Lanying, Yang Yang, Zhou Yusen, et al. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets, 2017, 21(2): 131-143.
    [9] Thanh L T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov, 2020, 19(5): 305-306.
    [10] 白仲虎. 昕然, 王荣斌 哺乳动物细胞生产人用灭活疫苗相关技术进展. 中国细胞生物学学报, 2019, 41(10): 1986-1993.
    [11] 姚昕, 毛群颖, 梁争论. EV71 全病毒灭活疫苗的研究进展. 中国生物制品学杂志, 2012, 25(10): 1391-1394.
    [12] Lin Jiangtao, Zhang Jiansan, Su Nan, et al. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir Ther, 2007, 12(7): 1107-1113.
    [13] 中国临床试验注册中心. 新型冠状病毒灭活疫苗(Vero 细胞)随机、双盲、安慰剂平行对照Ⅰ/Ⅱ期临床试验. (2020-04-11)[2020-04-13]. http://www.chictr.org.cn/showproj.aspx?proj=52227.
    [14] 中国临床试验注册中心. 新型冠状病毒(2019-CoV)灭活疫苗(Vero 细胞)Ⅰ/Ⅱ期临床试验. (2020-04-29) [2020-05-04]. http://www.chictr.org.cn/showproj.aspx?proj=53003.
    [15] 临床试验数据库. Safety and Immunogenicity Study of Inactivated Vaccine for Prophylaxis of SARS CoV-2 Infection (COVID-19). (2020-4-20) [2020-04-28]. https://clinicaltrials.gov/ct2/show/NCT04352608?term=NCT04352608&draw=2&rank=1.
    [16] 李征, 刘晔, 李春阳. 减毒活疫苗的应用及其研究进展. 中国生物制品学杂志, 2018, 31(2): 205-209.
    [17] Minor P D. Live attenuated vaccines: historical successes and current challenges. Virology, 2015, 479-480(5): 379-392.
    [18] Lam T T Y, Shum M H H, Zhu H C, et al. Identifying SARS-CoV-2 related coronaviruses in malayan pangolins, Nature, 2020, 5. DOI: 10.1038/s41586-020-2169-0.
    [19] Brunham R C, Coombs K M. In celebration of the 200th anniversary of Edward Jenner’s inquiry into the causes and effects of the variolae vaccinae. Can J Infect Dis, 1998, 9(5): 310-313.
    [20] Dediego M L, A?lvarez E, Almazan F, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. Journal of Virology, 2007, 81(4): 1701-1713.
    [21] Regla-Nava J A, Nieto-Torres J L, Jimenez-Guardeño J M, et al. Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. Journal of Virology, 2015, 89(7): 3870-3887.
    [22] Jimenez-Guardeño J M, Regla-Nava J A, Nieto-Torres J L, et al. Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine. PLoS Pathog, 2015, 11(10): e1005215.
    [23] 三叶草公司官网. Clover Successfully Produced 2019-nCoV Subunit Vaccine Candidate and Detected Cross-Reacting Antibodies from Sera of Multiple Infected Patients. (2020-02-10) [2020-02-10]. http://www.cloverbiopharma.com/index.php?m=content&c=index&a=show&catid=11&id=41.
    [24] 郭慧敏, 缪秋红, 谭永贵, 等. 病毒样颗粒的常用表达系统和应用进展. 中国动物传染病学报, 2017, 25(4): 82-86.
    [25] Fochesato M, Dendouga N, Boxus M. Comparative preclinical evaluation of AS01 versus other adjuvant systems in a candidate herpes zoster glycoprotein E subunit vaccine. Hum Vaccin Immunother, 2016, 12(8): 2092-2095.
    [26] 葛兰素史克公司官网(中文). 葛兰素史克与养生堂厦门万泰联合厦门大学合作研发2019冠状病毒疫苗. (2020-04-03) [2020-04-03]. https://www.gsk-china.com/zh-cn/media/press-releases/2020/葛兰素史克与养生堂厦门万泰联合厦门大学合作研发2019冠状病毒疫苗/.
    [27] 成传刚, 慕婷, 袁军, 等. 重组病毒载体疫苗研究进展. 中国病毒病杂志, 2018, 8(4): 318-328.
    [28] Redoni M, Yacoub S, Rivino L. Dengue: status of current and under-development vaccines. Rev Med Virol, 2020, 4: e2101.
    [29] Scott A H, Rituparna D, Matthew T O, et al. Immunogenicity, lot consistency, and extended safety of rVSVΔG-ZEBOV-GP vaccine: a phase 3 randomized, double-blind, placebo-controlled study in healthy adults. J Infect Dis, 2019, 220(7): 1127-1135.
    [30] Li Jingxin, Hou Lihua, Meng Fanyue, et al. Immunity duration of a recombinant adenovirus type-5 vector-based Ebola vaccine and a homologous prime-boost immunisation in healthy adults in China: final report of a randomised, double-blind, placebo-controlled, phase 1 trial. The Lancet Global Health, 2017, 5(3): e324-e334.
    [31] 中国临床试验注册中心. 重组新型冠状病毒(2019-COV)疫苗(腺病毒载体)Ⅰ期临床试验. (2020-03-17) [2020-03-18]. http://www.chictr.org.cn/showproj.aspx?proj=51154.
    [32] 中国临床试验注册中心. 重组新型冠状病毒(2019-nCOV)疫苗(腺病毒载体)随机、双盲、安慰剂对照设计的Ⅱ期临床试验. (2020-4-10) [2020-04-10]. http://www.chictr.org.cn/showproj.aspx?proj=52006.
    [33] 临床试验数据库. A Study of a Candidate COVID-19 Vaccine (COV001). (2020-03-27) [2020-05-08]. https://clinicaltrials.gov/ct2/show/NCT04324606?term=NCT04324606&draw=2&rank=1.
    [34] Mühlebach M D. Vaccine platform recombinant measles virus. Virus Genes, 2017, 53(5): 733-740.
    [35] Malczyk A H, Kupke A, Prüfer P, et al. A highly immunogenic and protective Middle East respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform. Journal of Virology, 2015, 89(22): 11654-11667.
    [36] Humphreys I R, Sebastian S. Novel viral vectors in infectious diseases. Immunology, 2018, 153(1): 1-9.
    [37] Kichaev G, Mendoza J M, Amante D, et al. Electroporation mediated DNA vaccination directly to a mucosal surface results in improved immune responses. Hum Vaccin Immunother, 2013, 9(10): 2041-2048.
    [38] 宋丽, 熊丹, 焦新安, 等. 聚乙烯亚胺作为核酸疫苗佐剂的研究进展. 中国人兽共患病学报, 2019, 35(7): 660-666, 671.
    [39] 傅连臣, 刘灵芝, 侯佩强. DNA 疫苗研究进展. 预防医学论坛, 2019, 25(10): 797-800.
    [40] 临床试验数据库. Safety, tolerability and immunogenicity of INO-4800 for COVID-19 in healthy volunteers. (2020-04-07) [2020-04-24]. https://clinicaltrials.gov/ct2/show/NCT04336410?term=INO-4800&draw=2&rank=1.
    [41] Modjarrad K, Roberts C C, Mills K T, et al. Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect Dis, 2019, 19(9): 1013-1022.
    [42] Kutzler M A, Weiner D B. DNA vaccines: ready for prime time?. Nat Rev Genet, 2008, 9(10): 776-788.
    [43] Kowalski P S, Rudra A, Miao L, et al. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Molecular Therapy, 2019, 27(4): 710-728.
    [44] Pardi N, Hogan M J, Weissman D. Recent advances in mRNA vaccine technology. Curr Opin Immunol, 2020, 65: 14-20.
    [45] 临床试验数据库. Safety and immunogenicity study of 2019-nCov vaccine (mRNA-1273) to treat novel coronavirus. (2020-2-25) [2020-05-04]. https://clinicaltrials.gov/ct2/show/NCT04283461?term=mRNA1273&draw=2&rank=1.
    [46] 临床试验数据库. Study to describe the safety, tolerability, immunogenicity, and potential efficacy of RNA vaccine candidates against COVID-19 in healthy ddults. (2020-4-30) [2020-05-07]. https://clinicaltrials.gov/ct2/show/NCT04368728?term=BNT162&draw=2&rank=1.
    [47] Pardi N, Hogan M J, Porter F W, et al. mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov, 2018, 17(4): 261-279.
    [48] World Health Organization. A coordinated global research roadmap: 2019 novel coronavirus. (2020-03-12) [2020-03-12]. https://www.who.int/who-documents-detail/a-coordinated-global-research-roadmap.
    [49] Weingartl H, Czub M, Czub S, et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. Journal of Virology, 2004, 78(22): 12672-12676.
    [50] Czub M, Weingartl H, Czub S, et al. Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine, 2005, 23(17/18): 2273-2279.
    [51] Román M, Calhoun W, Hinton K, et al. Respiratory syncytial virus infection in infants is associated with predominant Th-2-like response. Am J Respir Crit Care Med, 1997, 156(1): 190-195.
    [52] Tseng C T, Sbrana E, Iwata-Yoshikawa N, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One, 2012, 7(4): e35421.
    [53] Yasui F, Kai C, Kitabatake M, et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. The Journal of Immunology, 2008, 181(9): 6337-6348.
    [54] Bolles M, Deming D, Long K, et al. A Double-Inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. Journal of Virology, 2011, 85(23): 12201-12215.
    [55] Liu Li, Wei Qiang, Lin Qing, et al. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight, 2019, 4(4): e123158.
    [56] Eyal N, Lipsitch M, Smith P G. Human challenge studies to accelerate coronavirus vaccine licensure. J Infect Dis, 2020, 3: e152.
  • 加载中
计量
  • 文章访问数:  566
  • HTML全文浏览量:  314
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-12
  • 修回日期:  2020-05-12
  • 发布日期:  2020-03-17

目录

    /

    返回文章
    返回