新型冠状病毒疫苗的研发进展及分析
doi: 10.7507/1001-5515.202004025
Progress and analysis on the development of 2019-nCoV vaccine
-
摘要: 随着新型冠状(简称:新冠)病毒疫情在全球愈演愈烈,越来越多的人们将疫情遏制的希望寄托于新冠病毒疫苗的研发。目前全球已经有多个研究团队,采用了不同的疫苗开发技术路线开展新冠病毒疫苗的研发。本文对目前不同路线新冠疫苗的开发与研究现状进行了综述和分析,同时也探讨了这些不同疫苗今后发展的可能性。Abstract: As the COVID-19 pandemic is intensifying globally, more and more people are pinning their hopes on the development of vaccines. At present, there are many research teams who have adopted different vaccine technology routes to develop 2019-nCoV vaccines. This article reviews and analyzes the current development and research status of 2019-nCoV vaccines in different routes, and explores their possible development in the future.
-
[1] Chen Nanshan, Zhou Min, Dong Xuan, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(1223): 507-513. [2] Wu Fan, Zhao Su, Yu Bin, et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798): 265-269. [3] Zhu Na, Zhang Dingyu, Wang Wenling, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med, 2020, 382(8): 727-733. [4] Li F, Li W H, Farzan M, et al. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742): 1864-1868. [5] Agnihothram S, Gopal R, Yount B L, et al. Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses. J Infect Dis, 2014, 209(7): 995-1006. [6] Li Wenhui, Michael J M, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965): 450-454. [7] Park W B, Kwon N J, Choi S J, et al. Virus isolation from the first patient with SARS-CoV-2 in Korea. J Korean Med Sci, 2020, 35(7): e84. [8] Du Lanying, Yang Yang, Zhou Yusen, et al. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets, 2017, 21(2): 131-143. [9] Thanh L T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov, 2020, 19(5): 305-306. [10] 白仲虎. 昕然, 王荣斌 哺乳动物细胞生产人用灭活疫苗相关技术进展. 中国细胞生物学学报, 2019, 41(10): 1986-1993. [11] 姚昕, 毛群颖, 梁争论. EV71 全病毒灭活疫苗的研究进展. 中国生物制品学杂志, 2012, 25(10): 1391-1394. [12] Lin Jiangtao, Zhang Jiansan, Su Nan, et al. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir Ther, 2007, 12(7): 1107-1113. [13] 中国临床试验注册中心. 新型冠状病毒灭活疫苗(Vero 细胞)随机、双盲、安慰剂平行对照Ⅰ/Ⅱ期临床试验. (2020-04-11)[2020-04-13]. http://www.chictr.org.cn/showproj.aspx?proj=52227. [14] 中国临床试验注册中心. 新型冠状病毒(2019-CoV)灭活疫苗(Vero 细胞)Ⅰ/Ⅱ期临床试验. (2020-04-29) [2020-05-04]. http://www.chictr.org.cn/showproj.aspx?proj=53003. [15] 临床试验数据库. Safety and Immunogenicity Study of Inactivated Vaccine for Prophylaxis of SARS CoV-2 Infection (COVID-19). (2020-4-20) [2020-04-28]. https://clinicaltrials.gov/ct2/show/NCT04352608?term=NCT04352608&draw=2&rank=1. [16] 李征, 刘晔, 李春阳. 减毒活疫苗的应用及其研究进展. 中国生物制品学杂志, 2018, 31(2): 205-209. [17] Minor P D. Live attenuated vaccines: historical successes and current challenges. Virology, 2015, 479-480(5): 379-392. [18] Lam T T Y, Shum M H H, Zhu H C, et al. Identifying SARS-CoV-2 related coronaviruses in malayan pangolins, Nature, 2020, 5. DOI: 10.1038/s41586-020-2169-0. [19] Brunham R C, Coombs K M. In celebration of the 200th anniversary of Edward Jenner’s inquiry into the causes and effects of the variolae vaccinae. Can J Infect Dis, 1998, 9(5): 310-313. [20] Dediego M L, A?lvarez E, Almazan F, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. Journal of Virology, 2007, 81(4): 1701-1713. [21] Regla-Nava J A, Nieto-Torres J L, Jimenez-Guardeño J M, et al. Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. Journal of Virology, 2015, 89(7): 3870-3887. [22] Jimenez-Guardeño J M, Regla-Nava J A, Nieto-Torres J L, et al. Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine. PLoS Pathog, 2015, 11(10): e1005215. [23] 三叶草公司官网. Clover Successfully Produced 2019-nCoV Subunit Vaccine Candidate and Detected Cross-Reacting Antibodies from Sera of Multiple Infected Patients. (2020-02-10) [2020-02-10]. http://www.cloverbiopharma.com/index.php?m=content&c=index&a=show&catid=11&id=41. [24] 郭慧敏, 缪秋红, 谭永贵, 等. 病毒样颗粒的常用表达系统和应用进展. 中国动物传染病学报, 2017, 25(4): 82-86. [25] Fochesato M, Dendouga N, Boxus M. Comparative preclinical evaluation of AS01 versus other adjuvant systems in a candidate herpes zoster glycoprotein E subunit vaccine. Hum Vaccin Immunother, 2016, 12(8): 2092-2095. [26] 葛兰素史克公司官网(中文). 葛兰素史克与养生堂厦门万泰联合厦门大学合作研发2019冠状病毒疫苗. (2020-04-03) [2020-04-03]. https://www.gsk-china.com/zh-cn/media/press-releases/2020/葛兰素史克与养生堂厦门万泰联合厦门大学合作研发2019冠状病毒疫苗/. [27] 成传刚, 慕婷, 袁军, 等. 重组病毒载体疫苗研究进展. 中国病毒病杂志, 2018, 8(4): 318-328. [28] Redoni M, Yacoub S, Rivino L. Dengue: status of current and under-development vaccines. Rev Med Virol, 2020, 4: e2101. [29] Scott A H, Rituparna D, Matthew T O, et al. Immunogenicity, lot consistency, and extended safety of rVSVΔG-ZEBOV-GP vaccine: a phase 3 randomized, double-blind, placebo-controlled study in healthy adults. J Infect Dis, 2019, 220(7): 1127-1135. [30] Li Jingxin, Hou Lihua, Meng Fanyue, et al. Immunity duration of a recombinant adenovirus type-5 vector-based Ebola vaccine and a homologous prime-boost immunisation in healthy adults in China: final report of a randomised, double-blind, placebo-controlled, phase 1 trial. The Lancet Global Health, 2017, 5(3): e324-e334. [31] 中国临床试验注册中心. 重组新型冠状病毒(2019-COV)疫苗(腺病毒载体)Ⅰ期临床试验. (2020-03-17) [2020-03-18]. http://www.chictr.org.cn/showproj.aspx?proj=51154. [32] 中国临床试验注册中心. 重组新型冠状病毒(2019-nCOV)疫苗(腺病毒载体)随机、双盲、安慰剂对照设计的Ⅱ期临床试验. (2020-4-10) [2020-04-10]. http://www.chictr.org.cn/showproj.aspx?proj=52006. [33] 临床试验数据库. A Study of a Candidate COVID-19 Vaccine (COV001). (2020-03-27) [2020-05-08]. https://clinicaltrials.gov/ct2/show/NCT04324606?term=NCT04324606&draw=2&rank=1. [34] Mühlebach M D. Vaccine platform recombinant measles virus. Virus Genes, 2017, 53(5): 733-740. [35] Malczyk A H, Kupke A, Prüfer P, et al. A highly immunogenic and protective Middle East respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform. Journal of Virology, 2015, 89(22): 11654-11667. [36] Humphreys I R, Sebastian S. Novel viral vectors in infectious diseases. Immunology, 2018, 153(1): 1-9. [37] Kichaev G, Mendoza J M, Amante D, et al. Electroporation mediated DNA vaccination directly to a mucosal surface results in improved immune responses. Hum Vaccin Immunother, 2013, 9(10): 2041-2048. [38] 宋丽, 熊丹, 焦新安, 等. 聚乙烯亚胺作为核酸疫苗佐剂的研究进展. 中国人兽共患病学报, 2019, 35(7): 660-666, 671. [39] 傅连臣, 刘灵芝, 侯佩强. DNA 疫苗研究进展. 预防医学论坛, 2019, 25(10): 797-800. [40] 临床试验数据库. Safety, tolerability and immunogenicity of INO-4800 for COVID-19 in healthy volunteers. (2020-04-07) [2020-04-24]. https://clinicaltrials.gov/ct2/show/NCT04336410?term=INO-4800&draw=2&rank=1. [41] Modjarrad K, Roberts C C, Mills K T, et al. Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect Dis, 2019, 19(9): 1013-1022. [42] Kutzler M A, Weiner D B. DNA vaccines: ready for prime time?. Nat Rev Genet, 2008, 9(10): 776-788. [43] Kowalski P S, Rudra A, Miao L, et al. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Molecular Therapy, 2019, 27(4): 710-728. [44] Pardi N, Hogan M J, Weissman D. Recent advances in mRNA vaccine technology. Curr Opin Immunol, 2020, 65: 14-20. [45] 临床试验数据库. Safety and immunogenicity study of 2019-nCov vaccine (mRNA-1273) to treat novel coronavirus. (2020-2-25) [2020-05-04]. https://clinicaltrials.gov/ct2/show/NCT04283461?term=mRNA1273&draw=2&rank=1. [46] 临床试验数据库. Study to describe the safety, tolerability, immunogenicity, and potential efficacy of RNA vaccine candidates against COVID-19 in healthy ddults. (2020-4-30) [2020-05-07]. https://clinicaltrials.gov/ct2/show/NCT04368728?term=BNT162&draw=2&rank=1. [47] Pardi N, Hogan M J, Porter F W, et al. mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov, 2018, 17(4): 261-279. [48] World Health Organization. A coordinated global research roadmap: 2019 novel coronavirus. (2020-03-12) [2020-03-12]. https://www.who.int/who-documents-detail/a-coordinated-global-research-roadmap. [49] Weingartl H, Czub M, Czub S, et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. Journal of Virology, 2004, 78(22): 12672-12676. [50] Czub M, Weingartl H, Czub S, et al. Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine, 2005, 23(17/18): 2273-2279. [51] Román M, Calhoun W, Hinton K, et al. Respiratory syncytial virus infection in infants is associated with predominant Th-2-like response. Am J Respir Crit Care Med, 1997, 156(1): 190-195. [52] Tseng C T, Sbrana E, Iwata-Yoshikawa N, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One, 2012, 7(4): e35421. [53] Yasui F, Kai C, Kitabatake M, et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. The Journal of Immunology, 2008, 181(9): 6337-6348. [54] Bolles M, Deming D, Long K, et al. A Double-Inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. Journal of Virology, 2011, 85(23): 12201-12215. [55] Liu Li, Wei Qiang, Lin Qing, et al. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight, 2019, 4(4): e123158. [56] Eyal N, Lipsitch M, Smith P G. Human challenge studies to accelerate coronavirus vaccine licensure. J Infect Dis, 2020, 3: e152.
点击查看大图
计量
- 文章访问数: 573
- HTML全文浏览量: 319
- PDF下载量: 11
- 被引次数: 0