Issue 3
Mar 2021
Turn off MathJax
Article Contents
Wu Yingjie, Wu Zhilin, Wang Lin, Nian Weiqi, He Yong, Guo Yongcai. Respiratory rate monitoring system based on inorganic halide perovskite humidity sensor[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(3): 200100. doi: 10.12086/oee.2021.200100
Citation: Wu Yingjie, Wu Zhilin, Wang Lin, Nian Weiqi, He Yong, Guo Yongcai. Respiratory rate monitoring system based on inorganic halide perovskite humidity sensor[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(3): 200100. doi: 10.12086/oee.2021.200100

Respiratory rate monitoring system based on inorganic halide perovskite humidity sensor

doi: 10.12086/oee.2021.200100
Funds:

National Key R & D Plan for Major Instruments 2016YFF0102802

Chongqing Key Instrument Project cstc2017zdcy-zdzxX0009

Funded by Special Fund for Performance Incentive Guidance of Scientific Research Institutions in Chongqing cstc2019jxjl130029

Chongqing Natural Science Foundation cstc2018jcyjA3233

Chongqing Natural Science Foundation cstc2019jcyj-msxmX0623

Fundamental Scientific Research Business of Central Universities 2018CDQYGD0008

Fundamental Scientific Research Business of Central Universities 2018CDXYGD0017

Fundamental Scientific Research Business of Central Universities 2019CDQYGD004

Chongqing Graduate Research and Innovation Project CYS19011

More Information
  • Corresponding author: Guo Yongcai, E-mail: ycguo@cqu.edu.cn
  • Received Date: 23 Mar 2020
  • Rev Recd Date: 06 Nov 2020
  • The traditional respiratory rate measurement technologies have several deficiencies, such as subjective appraised results, complicated signal extraction processes, difficult access to equipment, and inconvenience to move due to the wired connection setting. The respiratory airflow can directly reflect the human breath, and the respiratory frequency is usually 10~12 breaths/min (1 ventilation every 5~6 seconds). The humidity difference between exhalation and inhalation can be directly used to measure respiratory rate. In the present work, a wireless respiratory rate monitoring system based on inorganic halide perovskite humidity sensor was developed. The sensor exhibits an ultrasensitive humidity sensing performance, which overcomes the long response/recovery time (> 10 seconds) of the commercial humidity sensors. The system utilized a Zigbee wireless communication to transmit the measurement signal, which separates the signal detection and processing parts, making it easier for the tester to move. The upper computer software was designed and used for data processing to calculate the breathing rate. The system can accurately monitor the respiratory rate in real-time, recognize and alarm the apnea successfully by comparing with a setting threshold value. The test results show that the system can accurately monitor the breathing rate with a maximum error of 1 time per minute. The system possesses great potential for application in respiratory rate monitoring due to its high accuracy, simple operation, portability, and low cost.

     

  • loading
  • [1]
    Cretikos M A, Bellomo R, Hillman K, et al. Respiratory rate: the neglected vital sign[J]. Med J Aust, 2008, 188(11): 657-659. doi: 10.5694/j.1326-5377.2008.tb01825.x
    [2]
    Allen J. Photoplethysmography and its application in clinical physiological measurement[J]. Physiol Meas, 2007, 28(3): R1-R39. doi: 10.1088/0967-3334/28/3/R01
    [3]
    Hogan J. Why don't nurses monitor the respiratory rates of patients?[J]. Br J Nurs, 2006, 15(9): 489-492. doi: 10.12968/bjon.2006.15.9.21087
    [4]
    陈星池, 赵海, 毕远国, 等. 手机可见光提取脉搏中呼吸率的估计[J]. 东北大学学报(自然科学版), 2017, 38(7): 932-935. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201707005.htm

    Chen X C, Zhao H, Bi Y G, et al. Respiratory rate estimation from smartphone-camera-acquired pulse wave signal using visible light[J]. J Northeast Univ (Nat Sci), 2017, 38(7): 932-935. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201707005.htm
    [5]
    Pimentel M A F, Johnson A E W, Charlton P H, et al. Toward a robust estimation of respiratory rate from pulse oximeters[J]. IEEE Trans Biomed Eng, 2017, 64(8): 1914-1923. doi: 10.1109/TBME.2016.2613124
    [6]
    陈星池, 赵海, 李晗, 等. 近红外可穿戴设备中脉搏波的呼吸率检测[J]. 光学 精密工程, 2016, 24(6): 1297-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201606009.htm

    Chen X C, Zhao H, Li H, et al. Detection of respiratory rate using pulse wave on near infrared wearable devices[J]. Opt Precision Eng, 2016, 24(6): 1297-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201606009.htm
    [7]
    Charlton P H, Birrenkott D A, Bonnici T, et al. Breathing rate estimation from the electrocardiogram and photoplethysmogram: a review[J]. IEEE Rev Biomed Eng, 2018, 11: 2-20. doi: 10.1109/RBME.2017.2763681
    [8]
    储泰山, 陆美珠, 马志新. 基于床垫式生命监测仪的呼吸率检测[J]. 科技创新与应用, 2014(18): 5-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201418005.htm

    Chu T S, Lu M Z, Ma Z X. Respiratory rate measurement based on mattress life monitor[J]. Technol Innov Appl, 2014(18): 5-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201418005.htm
    [9]
    Turnbull H, Kasereka M C, Amirav I, et al. Development of a novel device for objective respiratory rate measurement in low-resource settings[J]. BMJ Innovat, 2018, 4(4): 185. doi: 10.1136/bmjinnov-2017-000267
    [10]
    Lee P J. Clinical evaluation of a novel respiratory rate monitor[J]. J Clin Monit Comp, 2016, 30(2): 175-183. doi: 10.1007/s10877-015-9697-4
    [11]
    范大勇. 便携式呼吸监测系统设计方案的改进和算法研究[D]. 天津: 天津大学, 2018.

    Fan D Y. Improved design and algorithm research of portable respiratory detection system[D]. Tianjin: Tianjin University, 2018.
    [12]
    Zhen Z, Li Z C, Zhao X L, et al. Formation of uniform water microdroplets on wrinkled graphene for ultrafast humidity sensing[J]. Small, 2018, 14(15): 1703848. doi: 10.1002/smll.201703848
    [13]
    Smith A D, Elgammal K, Niklaus F, et al. Resistive graphene humidity sensors with rapid and direct electrical readout[J]. Nanoscale, 2015, 7(45): 19099-19109. doi: 10.1039/C5NR06038A
    [14]
    Atalay O, Kennon W R, Demirok E. Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modeling[J]. IEEE Sens J, 2015, 15(1): 110-122. doi: 10.1109/JSEN.2014.2339739
    [15]
    Zheng Y L, Ding X R, Poon C C Y, et al. Unobtrusive sensing and wearable devices for health informatics[J]. IEEE Trans Biomed Eng, 2014, 61(5): 1538-1554. doi: 10.1109/TBME.2014.2309951
    [16]
    Mogera U, Sagade A A, George S J, et al. Ultrafast response humidity sensor using supramolecular nanofibre and its application in monitoring breath humidity and flow[J]. Sci Rep, 2014, 4: 4103. http://www.nature.com/articles/srep04103
    [17]
    Borini S, White R, Wei D, et al. Ultrafast graphene oxide humidity sensors[J]. ACS Nano, 2013, 7(12): 11166-11173. doi: 10.1021/nn404889b
    [18]
    Adib F, Mao H Z, Kabelac Z E, et al. Smart homes that monitor breathing and heart rate[C]//Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, South Korea, 2015: 837-846.
    [19]
    Iber C, Ancoli-Israel S, Chesson A L, et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications[M]. 2nd ed. Westchester, Ill, USA: American Academy of Sleep Medicine, 2012.
    [20]
    Anichini C, Aliprandi A, Gali S M, et al. Ultrafast and highly sensitive chemically functionalized graphene oxide-based humidity sensors: harnessing device performances via the supramolecular approach[J]. ACS Appl Mater Interfaces, 2020, 12(39): 44017-44025. doi: 10.1021/acsami.0c11236
  • 加载中

Catalog

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(541) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return