Issue 3
Mar 2021
Turn off MathJax
Article Contents
Zhang Yanjun, Gao Haichuan, Zhang Longtu, Liu Qiang, Fu Xinghu. Embedded gold-plated fiber Bragg grating temperature and stress sensors encapsulated in capillary copper tube[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(3): 200195. doi: 10.12086/oee.2021.200195
Citation: Zhang Yanjun, Gao Haichuan, Zhang Longtu, Liu Qiang, Fu Xinghu. Embedded gold-plated fiber Bragg grating temperature and stress sensors encapsulated in capillary copper tube[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(3): 200195. doi: 10.12086/oee.2021.200195

Embedded gold-plated fiber Bragg grating temperature and stress sensors encapsulated in capillary copper tube

doi: 10.12086/oee.2021.200195
Funds:

Innovative Demonstration Project of Multifunctional Offshore Wind Power Installation Platform of State Oceanic Administration 

National Natural Science Foundation A030802

Yanshan University Basic Research Special Topic Cultivation Project 16LGY017

More Information
  • Corresponding author: Fu Xinghu, E-mail: fuxinghu@ysu.edu.cn
  • Received Date: 30 May 2020
  • Rev Recd Date: 24 Sep 2020
  • In order to realize the non-destructive and real-time dynamic stress monitoring method of the construction machinery surface in complex and harsh environments, a fiber Bragg grating (FBG) stress sensor packaging method based on magnetron sputtering technology is proposed. Two packaging methods of complete embedding (the capillary copper tube embedded in the entire grating area) and two sides embedding (capillary copper tube nested at both ends of the grating area) are studied. The sensitization effect of the sensor is analyzed from the perspective of theory and finite element, and the results are consistent. The physical sensors are made, and temperature, stress, and comparison experiments are carried out. Simulation and experiment show that the FBG sensor improves the sensitivity by about 7.5% under this model. The temperature experiment shows that the temperature feedback correlation coefficient R2 of the second package structure reaches 0.99948, which shows good linearity in the range of 30 ℃~80 ℃; the stress experiment correlation coefficient R2 also reaches 0.99924, and the sensitivity is 6.14 pm/MPa. The accuracy of demodulation system reaches 0.05 MPa, it can demodulate stress quickly and accurately. Comparative experiments show that the monitoring system composed of grating demodulator has higher accuracy than the monitoring system composed of strain gauges, and maximum deviation value smaller 59.8%. The packaging structure of metallization method of embedded capillary copper tube combined with organic glue fixed is simple, high sensitivity, and precision, can meet the needs of large-scale construction machinery surface non-destructive real-time health monitoring.

     

  • loading
  • [1]
    Lv J L, Hu Z C, Ren G F, et al. Research on new FBG displacement sensor and its application in Beijing Daxing airport project[J]. Optik, 2019, 178: 146-155. doi: 10.1016/j.ijleo.2018.09.117
    [2]
    Van Der Kooi K, Hoult N A. Assessment of a steel model truss using distributed fibre optic strain sensing[J]. Eng Struct, 2018, 171: 557-568. doi: 10.1016/j.engstruct.2018.05.100
    [3]
    Zhou Z, Wang Z Z, Shao L. Fiber-reinforced polymer-packaged optical fiber Bragg grating strain sensors for infrastructures under harsh environment[J]. J Sens, 2016, 2016: 3953750. doi: 10.1155/2016/3953750
    [4]
    Hong C Y, Zhang Y F, Yang Y Y, et al. A FBG based displacement transducer for small soil deformation measurement[J]. Sens Actuator A Phys, 2019, 286: 35-42. doi: 10.1016/j.sna.2018.12.022
    [5]
    Gąsior P, Malesa M, Kaleta J, et al. Application of complementary optical methods for strain investigation in composite high pressure vessel[J]. Compos Struct, 2018, 203: 718-724. doi: 10.1016/j.compstruct.2018.07.060
    [6]
    赵颖, 孙伟民, 宋大伟, 等. 陶瓷封装对光纤光栅体温测量探头效果的影响[J]. 应用光学, 2012, 33(6): 1173-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201206038.htm

    Zhao Y, Sun W M, Song D W, et al. Effect of ceramic packages on fiber grating measuring temperature probe[J]. J Appl Opt, 2012, 33(6): 1173-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201206038.htm
    [7]
    田赫, 陈天庭, 白岩, 等. 玻璃封装医用小型光纤光栅温度传感探头[J]. 光学 精密工程, 2017, 25(12): 3105-3110. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201712017.htm

    Tian H, Chen T T, Bai Y, et al. Medical miniature fiber grating temperature sensing probe encapsulated with glass[J]. Opt Precis Eng, 2017, 25(12): 3105-3110. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201712017.htm
    [8]
    Terroba F, Frövel M, Atienza R. Structural health and usage monitoring of an unmanned turbojet target drone[J]. Struct Health Monit, 2019, 18(2): 635-650. doi: 10.1177/1475921718764082
    [9]
    Wada D, Igawa H, Kasai T. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique[J]. Appl Opt, 2016, 55(25): 6953-6959. doi: 10.1364/AO.55.006953
    [10]
    魏莉, 余玲玲, 姜达州, 等. 基于膜片与菱形结构的光纤布拉格光栅加速度传感器[J]. 中国激光, 2019, 46(9): 0910003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201909038.htm

    Wei L, Yu L L, Jiang D Z, et al. Fiber Bragg grating accelerometer based on diaphragm and diamond structure[J]. Chinese J Lasers, 2019, 46(9): 0910003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201909038.htm
    [11]
    Zhao Z G, Zhang Y J, Li C, et al. Monitoring of coal mine roadway roof separation based on fiber Bragg grating displacement sensors[J]. Int J Rock Mech Min Sci, 2015, 74: 128-132. doi: 10.1016/j.ijrmms.2015.01.002
    [12]
    Jia Z G, Ren L, Li H N, et al. Pipeline leakage identification and localization based on the fiber Bragg grating hoop strain measurements and particle swarm optimization and support vector machine[J]. Struct Control Health Monit, 2019, 26(2): e2290. doi: 10.1002/stc.2290
    [13]
    Wang J Y, Jiang L, Sun Z R, et al. Research on the surface subsidence monitoring technology based on fiber Bragg grating sensing[J]. Photonic Sens, 2017, 7(1): 20-26. doi: 10.1007/s13320-016-0331-y
    [14]
    张文涛, 黄稳柱, 李芳. 高精度光纤光栅传感技术及其在地球物理勘探、地震观测和海洋领域中的应用[J]. 光电工程, 2018, 45(9): 170615. doi: 10.12086/oee.2018.170615

    Zhang W T, Huang W Z, Li F. High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering[J]. Opto-Electron Eng, 2018, 45(9): 170615. doi: 10.12086/oee.2018.170615
    [15]
    谢凯, 谭滔, 穆博鑫, 等. 角钢结构光纤光栅位移传感器的研究[J]. 光电工程, 2018, 45(9): 180106. doi: 10.12086/oee.2018.180106

    Xie K, Tan T, Mu B X, et al. Study on fiber Bragg grating displacement sensor with angle steel structure[J]. Opto-Electron Eng, 2018, 45(9): 180106. doi: 10.12086/oee.2018.180106
    [16]
    岳音, 王源, 段建立, 等. 光纤光栅CFRP混凝土复合拱裂缝监测实验研究[J]. 中国激光, 2015, 42(8): 0805004. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201508024.htm

    Yue Y, Wang Y, Duan J L, et al. Experimental study on fiber Bragg grating monitoring the crack of CFRP concrete composite arch[J]. Chin J Lasers, 2015, 42(8): 0805004. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201508024.htm
    [17]
    Kuang Y, Guo Y X, Xiong L, et al. Packaging and temperature compensation of fiber Bragg grating for strain sensing: a survey[J]. Photonic Sens, 2018, 8(4): 320-331. doi: 10.1007/s13320-018-0504-y
    [18]
    张欣颖, 陈爽. 石英套管封装光纤光栅温度传感器[J]. 计测技术, 2018, 38(6): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJC201806004.htm

    Zhang X Y, Chen S. FBG temperature sensor with quartz casing package[J]. Metrol Meas Technol, 2018, 38(6): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJC201806004.htm
    [19]
    Grandal T, Zornoza A, López A, et al. Analysis of fiber optic sensor embedded in metals by automatic and manual TIG welding[J]. IEEE Sens J, 2019, 19(17): 7425-7433. doi: 10.1109/JSEN.2019.2916639
    [20]
    王裕波, 李玉龙, 吕明阳. 激光焊接封装的光纤光栅智能悬臂梁[J]. 激光与红外, 2016, 46(5): 587-592. doi: 10.3969/j.issn.1001-5078.2016.05.015

    Wang Y B, Li Y L, Lü M Y. Smart cantilever beam of fiber Bragg grating packaged by laser welding[J]. Laser Infrared, 2016, 46(5): 587-592. doi: 10.3969/j.issn.1001-5078.2016.05.015
    [21]
    Guo Y X, Xiong L, Liu H H. Research on the durability of metal-packaged fiber Bragg grating sensors[J]. IEEE Photon Technol Lett, 2019, 31(7): 525-528. doi: 10.1109/LPT.2019.2900069
    [22]
    甄聪棉, 李壮志, 侯登录, 等. 真空蒸发镀膜[J]. 物理实验, 2017, 37(5): 27-31. doi: 10.3969/j.issn.1005-4642.2017.05.006

    Zhen C M, Li Z Z, Hou D L, et al. Preparation of aluminum film by vacuum evaporation[J]. Phys Exp, 2017, 37(5): 27-31. doi: 10.3969/j.issn.1005-4642.2017.05.006
    [23]
    赵向杰. 磁控溅射镀膜技术的研究及发展趋势[J]. 合成材料老化与应用, 2020, 49(2): 120-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE202002035.htm

    Zhao X J. Development and research of magnetron sputtering coating technology[J]. Synth Mater Aging Appl, 2020, 49(2): 120-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE202002035.htm
    [24]
    王欢, 郑刚, 陈海滨, 等. 调频连续波激光干涉光纤温度传感器[J]. 光电工程, 2019, 46(5): 180506. doi: 10.12086/oee.2019.180506

    Wang H, Zheng G, Chen H B, et al. Frequency-modulated continuous-wave laser interferometric optical fiber temperature sensor[J]. Opto-Electron Eng, 2019, 46(5): 180506. doi: 10.12086/oee.2019.180506
    [25]
    Xu M G, Reekie L, Chow Y T, et al. Optical in-fibre grating high pressure sensor[J]. Electron Lett, 1993, 29(4): 398-399. doi: 10.1049/el:19930267
    [26]
    何进飞, 梁磊. 大型金属结构动态检测中的温度补偿方法研究[J]. 武汉理工大学学报, 2010, 32(12): 113-116. doi: 10.3963/j.issn.1671-4431.2010.12.027

    He J F, Liang L. Research on the methods of temperature compensation in the dynamic monitoring of large metal structures[J]. J Wuhan Univ Technol, 2010, 32(12): 113-116. doi: 10.3963/j.issn.1671-4431.2010.12.027
  • 加载中

Catalog

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(157) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return