留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on phosphorus release from resuspended sediment under wind-induced waves in shallow water

Cheng Pengda Zhu Xinguang An Yi Feng Chun

程鹏达, 朱心广, 安翼, 冯春. 浅水风生波作用下再悬浮沉积物中磷释放的研究[J]. 机械工程学报, 2022, 38(3): 321399. doi: 10.1007/s10409-021-09023-z
引用本文: 程鹏达, 朱心广, 安翼, 冯春. 浅水风生波作用下再悬浮沉积物中磷释放的研究[J]. 机械工程学报, 2022, 38(3): 321399. doi: 10.1007/s10409-021-09023-z
P. Cheng, X. Zhu, Y. An, and C. Feng,Research on phosphorus release from resuspended sediment under wind-induced waves in shallow water. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09023-z'>https://doi.org/10.1007/s10409-021-09023-z
Citation: P. Cheng, X. Zhu, Y. An, and C. Feng,Research on phosphorus release from resuspended sediment under wind-induced waves in shallow water. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09023-z">https://doi.org/10.1007/s10409-021-09023-z

Research on phosphorus release from resuspended sediment under wind-induced waves in shallow water

doi: 10.1007/s10409-021-09023-z
Funds: 

the Strategic Priority Research Program of the National Key R&D Program of China Grant

and the National Natural Science Foundation of China NSFC

More Information
  • 摘要: 沉积物-水界面是湖泊的重要界面, 与大多数环境和生态问题有关. 风生波引起沉积物再悬浮造成水体二次污染. 由于水、再悬浮沉积物和磷的耦合机制会影响界面附近磷的释放, 因此探索了两种不同吸附-解吸能力沉积物的耦合模型, 以检查沉积物再悬浮后磷的释放规律. 得到了风速、风生波特性、沉积物分布和水体含磷量之间的关系. 风生波影响沉积物-水界面附近的局部流场, 造成沉积物再悬浮. 对于不同的沉积物, 单位沉积物解吸释放量与风速呈负相关. 中低风速时, 沉积物因界面小范围流场变化再悬浮, 上覆水中的磷快速增加, 且难于扩散. 此时, 磷的释放表现出小范围集中释放的特点, 可能迅速影响水环境, 也可能为治理提供了窗口期.

     

  • 1.  Relationship between wind speed and wave parameters.

    2.  Computational domain for simulation.

    3.  Comparison of the numerical simulation results and experimental results.

    4.  Pressure distribution for different wave periods.

    5.  Peak pressure with wind velocity at different time.

    6.  Vertical distributions of average volume fraction (φ) of particles in the overlying water at different time.

    7.  Vertical distribution of φ in overlying water at 100T.

    8.  Relationship between the average total P concentration and time.

    9.  Relationship between the amount of P released per unit of sediment (c/φ) and time.

    10.  Comparison of the initial and final values of c/φ.

    Table 1.   Calculation parameters for model validation

    h (m)H (m)T (s)L (m)D50 (μm)
    Experiment 1 [32]0.30.141.72.71130
    Experiment 2 [32]0.30.091.72.7197
    Experiment 3 [32]11.32.0872.4380
    下载: 导出CSV

    Table 2.   Calculation parameters for wind-induced waves

    Uz = 0.1·(gh)−0.5T (s)L (m)H (cm)H/L
    Case 1 2.920.350.190.730.039
    Case 2 5.360.490.381.660.044
    Case 3 7.800.610.572.590.045
    Case 410.240.730.763.510.046
    下载: 导出CSV
  • [1] P. Cheng, H. Zhu, B. Zhong, and D. Wang, Transport mechanisms of contaminants released from fine sediment in rivers, Acta Mech. Sin. 31, 791 (2015).
    [2] C. Fan, Advances and prospect in sediment-water interface of lakes: A review, J. Lake Sci. 31, 1191 (2019).
    [3] K. J. Fetters, D. M. Costello, C. R. Hammerschmidt, and G. A. Burton Jr., Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments, Environ Toxicol Chem 35, 676 26313755(2016).
    [4] G. Matisoff, S. B. Watson, J. Guo, A. Duewiger, and R. Steely, Sediment and nutrient distribution and resuspension in Lake Winnipeg, Sci. Total Environ. 575, 173 27741453(2017).
    [5] H. Lepage, M. Launay, J. Le Coz, H. Angot, C. Miège, S. Gairoard, O. Radakovitch, and M. Coquery, Impact of dam flushing operations on sediment dynamics and quality in the upper Rhône River, France, J. Environ. Manage. 255, 109886 32063323(2020).
    [6] M. Pivato, L. Carniello, J. Gardner, S. Silvestri, and M. Marani, Water and sediment temperature dynamics in shallow tidal environments: The role of the heat flux at the sediment-water interface, Adv. Water Resources 113, 126 (2018).
    [7] S. L’Helguen, L. Chauvaud, P. Cuet, P. Frouin, J. F. Maguer, and J. Clavier, A novel approach using the 15n tracer technique and benthic chambers to determine ammonium fluxes at the sedimentwater interface and its application in a back-reef zone on reunion island (Indian ocean), J. Exp. Mar. Biol. Ecol. 452, 143 (2014).
    [8] J. Y. Xue, X. Y. Jiang, X. L. Yao, M. Li, L. Zhang, Dissimilatory nitrate reduction processes at the sediment-water interface in lake Kuilei, China Environ. Sci. 38, 2289 (2018)
    [9] N. Zaaboub, A. Ounis, M. A. Helali, B. Béjaoui, A. I. Lillebø, E. F. Silva, and L. Aleya, Phosphorus speciation in sediments and assessment of nutrient exchange at the water-sediment interface in a mediterranean lagoon: Implications for management and restoration, Ecol. Eng. 73, 115 (2014).
    [10] G. W. Zhu, B. Q. Qin, L. Zhang, L. C. Luo, X. g. Sun, D. L. Hong, Y. J. Gao, and R. Xie, Wave effects on nutrient release of sediments from Lake Taihu by flume experiments, J. Lake Sci. 17, 61 (2005).
    [11] B. You, T. Wang, C. Fan, Quantitative simulative method of sediment resuspension in Lake Taihu, J. Lake Sci. 19, 611 (2007)
    [12] D. Wu, and Z. Hua, The effect of vegetation on sediment resuspension and phosphorus release under hydrodynamic disturbance in shallow lakes, Ecol. Eng. 69, 55 (2014).
    [13] A. Sharma, L. Huang, H. Fang, and X. Li, Effects of hydrodynamic on the mobility of phosphorous induced by sediment resuspension in a seepage affected alluvial channel, Chemosphere 260, 127550 32693255(2020).
    [14] G. Jin, Z. Zhang, R. Li, C. Chen, H. Tang, L. Li, and D. A. Barry, Transport of zinc ions in the hyporheic zone: Experiments and simulations, Adv. Water Resour. 146, 103775 (2020).
    [15] J. J. Voermans, M. Ghisalberti, and G. N. Ivey, A model for mass transport across the sediment-water interface, Water Resour. Res. 54, 2799 (2018).
    [16] Q. Jiang, G. Jin, H. Tang, C. Shen, M. Cheraghi, J. Xu, L. Li, and D. A. Barry, Density-dependent solute transport in a layered hyporheic zone, Adv. Water Resour. 142, 103645 (2020).
    [17] H. W. Zhu, D. Z. Wang, P. D. Cheng, J. Y. Fan, and B. C. Zhong, Effects of sediment physical properties on the phosphorus release in aquatic environment, Sci. China-Phys. Mech. Astron. 58, 1 (2015).
    [18] H. W. Zhu, P. D. Cheng, W. Li, J. H. Chen, Y. Pang, and D. Z. Wang, Empirical model for estimating vertical concentration profiles of re-suspended, sediment-associated contaminants, Acta Mech. Sin. 33, 846 (2017).
    [19] P. Cheng, X. Wang, and C. Feng, Numerical simulation of phosphorus release from resuspended sediment, Acta Mech. Sin. 36, 1191 (2020).
    [20] C. Tang, Y. Li, C. He, and K. Acharya, Dynamic behavior of sediment resuspension and nutrients release in the shallow and wind-exposed Meiliang Bay of Lake Taihu, Sci. Total Environ. 708, 135131 31787278(2020).
    [21] J. Huang, Q. Xu, B. Xi, X. Wang, W. Li, G. Gao, S. Huo, X. Xia, T. Jiang, D. Ji, H. Liu, and K. Jia, Impacts of hydrodynamic disturbance on sediment resuspension, phosphorus and phosphatase release, and cyanobacterial growth in Lake Tai, Environ. Earth Sci. 74, 3945 (2015).
    [22] C.-Z. Yuan, T.-Q. Hu, Y.-X. You, Experimental study on the characteristics of wind-induced waves in shallow water, Chin. J. Hydrodyn. 29, 536 (2014)
    [23] H. M. Shewan, and J. R. Stokes, Analytically predicting the viscosity of hard sphere suspensions from the particle size distribution, J. Non-Newtonian Fluid Mech. 222, 72 (2015).
    [24] J. J. Stickel, and R. L. Powell, Fluid mechanics and rheology of dense suspensions, Annu. Rev. Fluid Mech. 37, 129 (2005).
    [25] E. J. Hinch, The measurement of suspension rheology, J. Fluid Mech. 686, 1 (2011).
    [26] B. E. Launder, and D. B. Spalding, The numerical computation of turbulent flows, Comput. Methods Appl. Mech. Eng. 3, 269 (1974).
    [27] D. C. Wilcox, Turbulence Modeling for CFD, 3rd ed (DCW Industries Inc., La Canada Flintridge, 2010)
    [28] I. R. Siqueira, and P. R. de Souza Mendes, On the pressure-driven flow of suspensions: Particle migration in apparent yield-stress fluids, J. Non-Newtonian Fluid Mech. 265, 92 (2019).
    [29] C. I. Mendoza, and I. Santamaría-Holek, The rheology of hard sphere suspensions at arbitrary volume fractions: An improved differential viscosity model, J. Chem. Phys. 130, 044904 19191410(2009).
    [30] N. G. Jacobsen, D. R. Fuhrman, and J. Fredsøe, A wave generation toolbox for the open-source CFD library: OpenFoam®, Int. J. Numer. Meth. Fluids 70, 1073 (2012).
    [31] Z. Deng, P. Wang, and P. Cheng, Hydrodynamic performance of an asymmetry OWC device mounted on a box-type breakwater, Front. Mar. Sci. 8, 677030 (2021).
    [32] J. Van de Graaff, Sediment Concentration due to Wave Action. Dissertation for Doctoral Degree (Delft University of Technology, Delft, 1988)
    [33] M.-H. Chen, The Phosphorus Adsorption Rule and Surface Micro-topography Change of Sediment Particle, Dissertation for Doctoral Degree (Tsinghua University, Beijing, 2008)
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  67
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 录用日期:  2021-10-20
  • 网络出版日期:  2022-08-01
  • 发布日期:  2022-02-10
  • 刊出日期:  2022-03-01

目录

    /

    返回文章
    返回