留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological edge state analysis of hexagonal phononic crystals

Zhang Kai Hong Fang Luo Jie Deng Zichen

张凯, 洪放, 罗杰, 邓子辰. 六边形声子晶体的拓扑边缘态分析[J]. 机械工程学报, 2022, 38(3): 421455. doi: 10.1007/s10409-021-09030-x
引用本文: 张凯, 洪放, 罗杰, 邓子辰. 六边形声子晶体的拓扑边缘态分析[J]. 机械工程学报, 2022, 38(3): 421455. doi: 10.1007/s10409-021-09030-x
K. Zhang, F. Hong, J. Luo, and Z. Deng,Topological edge state analysis of hexagonal phononic crystals. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09030-x'>https://doi.org/10.1007/s10409-021-09030-x
Citation: K. Zhang, F. Hong, J. Luo, and Z. Deng,Topological edge state analysis of hexagonal phononic crystals. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09030-x">https://doi.org/10.1007/s10409-021-09030-x

Topological edge state analysis of hexagonal phononic crystals

doi: 10.1007/s10409-021-09030-x
Funds: 

the National Natural Science Foundation of China Grant

More Information
  • 摘要: 在本研究中, 我们提出了由六边形铝板和六根手性排列直杆组成的谷声子晶体. 将谷声子晶体引入拓扑绝缘体(TI)系统, 通过在频带上实现支持拓扑保护边缘波(TPEWs)的拓扑边缘态, 可以在具有界面路径的系统上引导拓扑保护边缘波的传播. 本文的手性拓扑边缘态实现机理与镜面对称系统的拓扑边缘态实现机理不完全相同. 与传统的打破镜像对称不同, 本文通过调节手性单胞中直杆的长度差异而非打破镜面对称, 从而在狄拉克点打开了具有拓扑边缘模式间隙的新的完全带隙. 我们研究了手性系统中的色散特性, 并将色散特性应用于界面上的波导, 以获得可设计的路径系统. 此外, 我们模拟了TPEWs在不同路径下的鲁棒传播, 并证明了其对缺陷后向散射的免疫力. 最后, 证明了手性体系中谷霍尔效应的存在. 这一研究结果将为手性材料拓扑状态的进一步研究奠定基础.

     

  • 1.  a Designed chiral unit cell composed of a hexagonal plate and six rectangular ligaments. b Brillouin zone. c-d Two types of disturbed unit cells with alternate distributions of ligaments of lengths 12 and 20 mm, respectively.

    2.  a Dispersion curves for chiral valley PCs where the length of the ligaments is b = 20 mm. b Dispersion curve for disturbed chiral valley PCs, with two types of ligaments of lengths b1 = 20 mm, b2 = 12 mm, respectively. c Two separated modes at the K and K′ points in the band structure shown in b, respectively. d Frequency variations in the bandgap with respect to the difference in length ∆b between the two types of ligaments. The blue area indicates the frequency range of the bandgap.

    3.  a Supercell with 8 unit cells of different types (Type I and Type II) along the e1 direction. Periodic boundary conditions are applied in the e1 direction. b Dispersion curves for the supercell composed of two types of unit cells, b1 = 12 mm, b2 = 20 mm and b1 = 20 mm, b2 = 12 mm. c Frequency range curves of interface mode under different ∆b values. d Acoustic pressure field on the interface of the supercell in a.

    4.  a Interface configuration of valley topological PCs. b-d Simulation of a displacement field at 2.5 kHz along a straight interface route, Z-shaped route, and U-shaped route, respectively. e-g Simulation of the transmission spectra of the TPEWs in b-d. h Simulation of a displacement field at 2.5 kHz along cross routes. i Acoustic zigzag transmission of robustness against cavities in the valley topological PCs.

    5.  Time domain simulation shows the propagation of plane acoustic excitation along routes with corners. a-d Wave propagation along the sharp shape route at 2, 4, 6, and 8 ms, respectively. e-h Wave propagation along the U-shaped route at 4, 6, 8, and 10 ms, respectively. The frequency of the plane acoustic excitation field is 2.5 kHz..

  • [1] Z. Zhang, W. Wang, and C. Wang, Parameter identification of nonlinear system via a dynamic frequency approach and its energy harvester application, Acta Mech. Sin. 36, 606 (2020).
    [2] T. C. Yuan, J. Yang, and L. Q. Chen, Nonlinear vibration analysis of a circular composite plate harvester via harmonic balance, Acta Mech. Sin. 35, 912 (2019).
    [3] W. Li, X. D. Yang, W. Zhang, Y. Ren, and T. Z. Yang, Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities, Acta Mech. Sin. 35, 879 (2019).
    [4] G. P. Sreenivasan, and M. M. Keppanan, Analytical approach for the design of convoluted air suspension and experimental validation, Acta Mech. Sin. 35, 1093 (2019).
    [5] K. Zhang, P. Zhao, F. Hong, Y. Yu, and Z. Deng, On the directional wave propagation in the tetrachiral and hexachiral lattices with local resonators, Smart Mater. Struct. 29, 015017 (2020).
    [6] K. Zhang, P. Zhao, C. Zhao, F. Hong, and Z. Deng, Study on the mechanism of band gap and directional wave propagation of the auxetic chiral lattices, Compos. Struct. 238, 111952 (2020).
    [7] H. Fan, B. Xia, L. Tong, S. Zheng, and D. Yu, Elastic higher-order topological insulator with topologically protected corner states, Phys. Rev. Lett. 122, 204301 31172787(2019).
    [8] S. Raghu, and F. D. M. Haldane, Analogs of quantum-Hall-effect edge states in photonic crystals, Phys. Rev. A 78, 033834 (2008).
    [9] T. Ochiai, and M. Onoda, Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states, Phys. Rev. B 80, 155103 (2009).
    [10] D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, Quantum spin-Hall effect and topologically invariant Chern numbers, Phys. Rev. Lett. 97, 036808 16907533(2006).
    [11] Y. Kim, K. Choi, J. Ihm, and H. Jin, Topological domain walls and quantum valley Hall effects in silicene, Phys. Rev. B 89, 085429 (2014).
    [12] L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco Jr, C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis, and F. Wang, Topological valley transport at bilayer graphene domain walls, Nature 520, 650 25901686(2015).
    [13] F. Zhang, A. H. MacDonald, and E. J. Mele, Valley Chern numbers and boundary modes in gapped bilayer graphene, Proc. Natl. Acad. Sci. USA 110, 10546 23754439(2013).
    [14] Z. Lan, J. W. You, and N. C. Panoiu, Nonlinear one-way edge-mode interactions for frequency mixing in topological photonic crystals, Phys. Rev. B 101, 155422 (2020).
    [15] Z. Zhang, Y. Tian, Y. Wang, S. Gao, Y. Cheng, X. Liu, and J. Christensen, Directional acoustic antennas based on valley-Hall topological insulators, Adv. Mater. 30, 1803229 30059167(2018).
    [16] C. Chen, T. Chen, Y. Wang, J. Wu, and J. Zhu, Observation of topological locally resonate and Bragg edge modes in a two-dimensional slit-typed sonic crystal, Appl. Phys. Express 12, 097001 (2019).
    [17] K. Zhang, F. Hong, J. Luo, and Z. Deng, Topological insulator in a hexagonal plate with droplet holes, J. Phys. D-Appl. Phys. 54, 105502 (2021).
    [18] X. Liu, G. Cai, and K. W. Wang, Reconfigurable topologically protected wave propagation in metastable structure, J. Sound Vib. 492, 115819 (2021).
    [19] Y. Dong, Y. Wang, C. Ding, S. Zhai, and X. Zhao, Tunable topological valley transport in acoustic topological metamaterials, Physica B 605, 412733 (2021).
    [20] Z. Tian, C. Shen, J. Li, E. Reit, H. Bachman, J. E. S. Socolar, S. A. Cummer, and T. J. Huang, Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals, Nat. Commun. 11, 762 32034148(2020).
    [21] Z. Zhang, Y. Tian, Y. Cheng, Q. Wei, X. Liu, and J. Christensen, Topological acoustic Delay line, Phys. Rev. Appl. 9, 034032 (2018).
    [22] B. Xia, G. Wang, and S. Zheng, Robust edge states of planar phononic crystals beyond high-symmetry points of Brillouin zones, J. Mech. Phys. Solids 124, 471 (2019).
    [23] Q. Zhang, Y. Chen, K. Zhang, and G. Hu, Programmable elastic valley Hall insulator with tunable interface propagation routes, Extreme Mech. Lett. 28, 76 (2019).
    [24] W. Zhou, Y. Su, Y. Muhammad, W. Chen, and C. W. Lim, Voltage-controlled quantum valley Hall effect in dielectric membrane-type acoustic metamaterials, Int. J. Mech. Sci. 172, 105368 (2020).
    [25] J. P. Xia, D. Jia, H. X. Sun, S. Q. Yuan, Y. Ge, Q. R. Si, and X. J. Liu, Programmable coding acoustic topological insulator, Adv. Mater. 30, 1805002 30294812(2018).
    [26] C. Chen, T. Chen, A. Song, X. Song, and J. Zhu, Switchable asymmetric acoustic transmission based on topological insulator and metasurfaces, J. Phys. D-Appl. Phys. 53, 44LT01 (2020).
    [27] A. Spadoni, M. Ruzzene, S. Gonella, and F. Scarpa, Phononic properties of hexagonal chiral lattices, Wave Motion 46, 435 (2009).
    [28] X. N. Liu, G. L. Huang, and G. K. Hu, Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices, J. Mech. Phys. Solids 60, 1907 (2012).
    [29] Q. He, and T. Jiang, Complementary multi-mode low-frequency vibration energy harvesting with chiral piezoelectric structure, Appl. Phys. Lett. 110, 213901 (2017).
    [30] X. Wen, C. Qiu, J. Lu, H. He, M. Ke, and Z. Liu, Acoustic Dirac degeneracy and topological phase transitions realized by rotating scatterers, J. Appl. Phys. 123, 091703 (2018).
    [31] X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, Wave propagation characterization and design of two-dimensional elastic chiral metacomposite, J. Sound Vib. 330, 2536 (2011).
    [32] R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial, Nat. Commun. 5, 5510 25417671(2014).
    [33] Z. Wen, S. Zeng, D. Wang, Y. Jin, and B. Djafari-Rouhani, Robust edge states of subwavelength chiral phononic plates, Extreme Mech. Lett. 44, 101209 (2021).
  • 加载中
图(5)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  45
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 录用日期:  2021-10-08
  • 网络出版日期:  2022-08-01
  • 发布日期:  2022-02-23
  • 刊出日期:  2022-03-01

目录

    /

    返回文章
    返回