留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Adaptive subdomain integration method for representing complex localized geometry in ANCF

He Gang Gao Kang Yu Zuqing Jiang Jun Li Qian

何钢, 高亢, 於祖庆, 姜君, 李堑. 基于绝对节点坐标方法的复杂局部特征自适应积分方法[J]. 机械工程学报, 2022, 38(3): 521442. doi: 10.1007/s10409-021-09032-x
引用本文: 何钢, 高亢, 於祖庆, 姜君, 李堑. 基于绝对节点坐标方法的复杂局部特征自适应积分方法[J]. 机械工程学报, 2022, 38(3): 521442. doi: 10.1007/s10409-021-09032-x
G. He, K. Gao, Z. Yu, J. Jiang, and Q. Li,Adaptive subdomain integration method for representing complex localized geometry in ANCF. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09032-x'>https://doi.org/10.1007/s10409-021-09032-x
Citation: G. He, K. Gao, Z. Yu, J. Jiang, and Q. Li,Adaptive subdomain integration method for representing complex localized geometry in ANCF. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09032-x">https://doi.org/10.1007/s10409-021-09032-x

Adaptive subdomain integration method for representing complex localized geometry in ANCF

doi: 10.1007/s10409-021-09032-x
Funds: 

the National Natural Science Foundation of China Grant

More Information
    Corresponding author: Yu Zuqing, E-mail address: Yuzq@hhu.edu.cn (Zuqing Yu)
  • 摘要: 论文将有限胞元法与绝对节点坐标法相结合, 提出高效稳定的含有复杂局部结构特征的ANCF单元分析方法; 并基于三角划分原理设计了自适应子域积分算法, 避免了过度的子域细分, 大大减少了计算成本. 论文用数值实例验证了所提出方法在大变形、大转动的动力学问题分析中的有效性.

     

  • 1.  Fully parameterized ANCF plate element.

    2.  Coordinate systems in ANCF.

    3.  Basic principle of FCM: a physical domain, b fictitious domain, c extended domain, d structured mesh.

    4.  Subdivision principle of FCM.

    5.  The mapping process of subdivision level 3.

    6.  Flow chart of adaptive subdomain integration method.

    7.  Element or cell subdivision with curved edges.

    8.  Numbering of subdividing cell: a cells to be subdivided, b cells after subdivision.

    9.  Schematic diagram of cell triangulation.

    10.  Quadrilateral mapping with one curved edge.

    11.  Triangle mapping with one curved edge.

    12.  The plate with irregular through-hole.

    13.  Partition and distribution of integration points of the plate under different subdomain size constraints: a size unconstrained, b size of subdomains less than 0.5, c size less than 0.25.

    14.  Geometric model of the plate with circular through-hole: a the geometric model of the plate, b the definition of hole.

    15.  Adaptive subdomain refining of the plate with circular through-hole: a adaptive subdomain partitioning, b integration point distribution.

    16.  Displacement comparison of plate models without/with localized features.

    17.  Vertical displacement of the soft palate with a hole.

    18.  The deformation of the soft palate with a hole.

    19.  Comparison of common cell subdivision and adaptive cell subdivision: a degree freedom and integration point, b running time of simulation.

    20.  Contact force model.

    21.  The plate with groove: a geometric model (top surface), b geometric model (bottom surface), c groove defined in the straight configuration.

    22.  Adaptively subdomain subdivision of the plate with groove: a adaptive subdomain partitioning, b integration point distribution.

    23.  Contact example.

    24.  Displacement of the plate during the contact process.

    25.  Contact force of plate with groove: a t = 0.178 s, b t = 0.195 s, c t=0.852 s, d t = 1.956 s.

    26.  Comparison of common cell subdivision and adaptive cell subdivision: a degree freedom and integration point, b running time of simulation.

    Table 1.   Material parameters of the model

    Linear elastic materialvalue
    Density (kg/m3)2000
    Elastic modulus (MPa)2
    Shear modulus (MPa) 1
    下载: 导出CSV

    Table 2.   Material parameters of soft plate

    Linear elastic materialvalue
    Elastic modulus (MPa) 0.5
    Shear modulus (MPa)0.25
    下载: 导出CSV

    Table 3.   The material parameters of plate for contact analysis

    Linear elastic material Value
    Density (kg/m3)7000
    Elastic modulus (MPa)1.2
    Shear modulus (MPa)0.6
    下载: 导出CSV

    Table 4.   The parameters of contact model

    Parameters Value
    Ground stiffness (N/m)9000
    Ground damping coefficient (N·s/m)20.0
    Friction coefficient μ0.75
    下载: 导出CSV
  • [1] A. A. Shabana, and D. Zhang, ANCF curvature continuity: Application to soft and fluid materials, Nonlin. Dyn. 100, 1497 (2020).
    [2] A. A. Shabana, C. J. Desai, E. Grossi, and M. Patel, Generalization of the strain-split method and evaluation of the nonlinear ANCF finite elements, Acta Mech. 231, 1365 (2020).
    [3] P. Lan, Q. Tian, and Z. Yu, A new absolute nodal coordinate formulation beam element with multilayer circular cross section, Acta Mech. Sin. 36, 82 (2020).
    [4] H. Hu, Q. Tian, and C. Liu, Computational dynamics of soft machines, Acta Mech. Sin. 33, 516 (2017).
    [5] S. Zhang, A. L. Gain, and J. A. Norato, Adaptive mesh refinement for topology optimization with discrete geometric components, Comput. Methods Appl. Mech. Eng. 364, 112930 (2020).
    [6] R. Bouclier, J. C. Passieux, and M. Salaün, Local enrichment of NURBS patches using a non-intrusive coupling strategy: Geometric details, local refinement, inclusion, fracture, Comput. Methods Appl. Mech. Eng. 300, 1 (2016).
    [7] J. Xu, N. Sun, L. Shu, T. Rabczuk, and G. Xu, An improved integration for trimmed geometries in isogeometric analysis, Comput. Mater. Continua 60, 615 (2019).
    [8] B. Marussig, and T. J. R. Hughes, A review of trimming in isogeometric analysis: Challenges, data exchange and simulation aspects, Arch. Computat. Methods Eng. 25, 1131 31186608(2018).
    [9] A. Chemin, T. Elguedj, and A. Gravouil, Isogeometric local h-refinement strategy based on multigrids, Finite Elem. Anal. Des. 100, 77 (2015).
    [10] Y. L. Kuo, W. L. Cleghorn, K. Behdinan, and R. G. Fenton, The h-p-r-refinement finite element analysis of a planar high-speed four-bar mechanism, Mechanism Machine Theor. 41, 505 (2006).
    [11] A. I. Valkeapää, M. K. Matikainen, and A. M. Mikkola, Meshing strategies in the absolute nodal coordinate formulation-based Euler-Bernoulli beam elements, Proc. Institut. Mech. Engineers Part K-J. Multi-Body Dyn. 230, 606 (2016).
    [12] Y. Zhang, C. Wei, Y. Zhao, C. Tan, and Y. Liu, Adaptive ANCF method and its application in planar flexible cables, Acta Mech. Sin. 34, 199 (2018).
    [13] N. A. Dodgson, and J. Kosinka, Can local NURBS refinement be achieved by modifying only the user interface?, Comput.-Aided Des. 71, 28 (2016).
    [14] L. Coradello, D. D’Angella, M. Carraturo, J. Kiendl, S. Kollmannsberger, E. Rank, and A. Reali, Hierarchically refined isogeometric analysis of trimmed shells, Comput. Mech. 66, 431 (2020).
    [15] G. Zhao, J. Yang, W. Wang, Y. Zhang, X. Du, and M. Guo, T-splines based isogeometric topology optimization with arbitrarily shaped design domains, Comput. Modeling Eng. Sci. 123, 1033 (2020).
    [16] J. Videla, F. Contreras, H. X. Nguyen, and E. Atroshchenko, Application of PHT-splines in bending and vibration analysis of cracked Kirchhoff-Love plates, Comput. Methods Appl. Mech. Eng. 361, 112754 (2020).
    [17] D. Miao, Z. Zou, M. A. Scott, M. J. Borden, and D. C. Thomas, Isogeometric Bézier dual mortaring: The enriched Bézier dual basis with application to second- and fourth-order problems, Comput. Methods Appl. Mech. Eng. 363, 112900 (2020).
    [18] Z. Zou, M. A. Scott, M. J. Borden, D. C. Thomas, W. Dornisch, and E. Brivadis, Isogeometric Bézier dual mortaring: Refineable higher-order spline dual bases and weakly continuous geometry, Comput. Methods Appl. Mech. Eng. 333, 497 (2018).
    [19] R. R. Hiemstra, K. M. Shepherd, M. J. Johnson, L. Quan, and T. J. R. Hughes, Towards untrimmed NURBS: CAD embedded reparameterization of trimmed B-rep geometry using frame-field guided global parameterization, Comput. Methods Appl. Mech. Eng. 369, 113227 (2020).
    [20] R. Schmidt, R. Wüchner, and K. U. Bletzinger, Isogeometric analysis of trimmed NURBS geometries, Comput. Methods Appl. Mech. Eng. 241-244, 93 (2012).
    [21] J. Xu, L. Gao, M. Xiao, J. Gao, and H. Li, Isogeometric topology optimization for rational design of ultra-lightweight architected materials, Int. J. Mech. Sci. 166, 105103 (2020).
    [22] P. Kang, and S. K. Youn, Isogeometric topology optimization of shell structures using trimmed NURBS surfaces, Finite Elem. Anal. Des. 120, 18 (2016).
    [23] G. He, M. Patel, and A. Shabana, Integration of localized surface geometry in fully parameterized ANCF finite elements, Comput. Methods Appl. Mech. Eng. 313, 966 (2017).
    [24] J. Parvizian, A. Düster, and E. Rank, Finite cell method, Comput. Mech. 41, 121 (2007).
    [25] M. Ranjbar, M. Mashayekhi, J. Parvizian, A. Düster, and E. Rank, Finite cell method implementation and validation of a nonlocal integral damage model, Int. J. Mech. Sci. 128-129, 401 (2017).
    [26] K. Khadra, P. Angot, S. Parneix, and J. P. Caltagirone, Fictitious domain approach for numerical modelling of Navier-Stokes equations, Int. J. Numer. Meth. Fluids 34, 651 (2000).
    [27] E. Rank, S. Kollmannsberger, C. Sorger, and A. Düster, Shell finite cell method: A high order fictitious domain approach for thin-walled structures, Comput. Methods Appl. Mech. Eng. 200, 3200 (2011).
    [28] L. Kudela, N. Zander, T. Bog, S. Kollmannsberger, and E. Rank, Efficient and accurate numerical quadrature for immersed boundary methods, Adv. Model. Simul. Eng. Sci. 2, 10 (2015).
    [29] M. Patel, G. Orzechowski, Q. Tian, and A. A. Shabana, A new multibody system approach for tire modeling using ANCF finite elements, Proc. Instit. Mech. Engineers Part K-J. Multi-body Dyn. 230, 69 (2016).
    [30] L. Piegl, W. Tiller, The NURBS Book. (Springer, Berlin, 1995)
    [31] W. J. Gordon, and C. A. Hall, Transfinite element methods: Blending-function interpolation over arbitrary curved element domains, Numer. Math. 21, 109 (1973).
  • 加载中
图(26) / 表(4)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  63
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 录用日期:  2021-10-08
  • 网络出版日期:  2022-08-01
  • 发布日期:  2022-03-07
  • 刊出日期:  2022-03-01

目录

    /

    返回文章
    返回