留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analytical solution for concentration distribution in an open channel flow with phase exchange kinetics

Barik Swarup Dalal D. C.

S. Barik, and D. C. Dalal, Analytical solution for concentration distribution in an open channel flow with phase exchange kinetics, Acta Mech. Sin. 38, 321506 (2022), http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09037-y'>https://doi.org/10.1007/s10409-021-09037-y
Citation: S. Barik, and D. C. Dalal, Analytical solution for concentration distribution in an open channel flow with phase exchange kinetics, Acta Mech. Sin. 38, 321506 (2022), http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09037-y">https://doi.org/10.1007/s10409-021-09037-y

Analytical solution for concentration distribution in an open channel flow with phase exchange kinetics

doi: 10.1007/s10409-021-09037-y
More Information
  • 摘要: 压痕试验是一种局部试验技术, 因此材料尺寸效应和局部不均匀性的作用非常重要. 尺寸无关材料的非均匀性影响已有研究. 本文采用尺寸相关应变梯度理论详细研究了材料尺寸效应和非均匀性(压头尖端附近的夹杂物)对压痕硬度的影响. 研究发现, 与基于常规塑性理论的尺寸无关材料相比, 考虑材料尺寸效应时, 非均质材料中的浅硬夹杂物更显著地提高了材料的压痕硬度. 这种硬化效应被认为与载荷的升高和大变形的局部约束有关. 特别是当涉及尺寸效应且夹杂物模量影响的过渡范围非常窄时, 材料的不均匀性影响主要来自于结构的不均匀性, 而非夹杂物模量本身. 初始夹杂物深度大于其直径后, 不均匀性的影响变得可以忽略. 压头与夹杂物的水平偏移对非均匀压痕的影响也非常敏感. 本文重点研究了微压痕和纳米压痕中的标度关系, 并对微观材料中的非均匀性的影响进行了研究和补充.

     

  • 1.  Schematic diagram for the open channel flow with phase exchange kinetics.

    2.  Comparison between present and previous results of two-dimensional concentration distributions at different times, aτ=0.5, b τ=0.75, c τ=1, d τ=2 (where y=0 and α=0).

    3.  Variations of dispersion coefficient with α for different Da.

    4.  Longitudinal distribution of mean concentration atτ=1, a Da=1, b α=1.

    5.  Mobile phase concentration contours at τ=1 (horizontal coordinate: η/Pe, vertical coordinate: y).

    6.  Mobile phase concentration contours for Da=1 (horizontal coordinate: η/Pe, vertical coordinate: y).

    7.  Mean concentration with immobile phase concentration for differentα at τ=6, where Da=1, a small values of α, b large values of α.

    8.  Axial distribution of the two-dimensional concentration variation rate, aα=0, b α=0.1,Da=1, c α=1,Da=1, d α=10,Da=1, e α=1,τ=1.

    .   Table 1 Values of maximum dispersion coefficients at maximum α for different Da

    DaMax{DT*/Pe2}αmMax{DT*/Pe2}{DT*/Pe2}|α=0 
    0.11.54900.515481.3225
    10.21940.658811.5185
    100.09811.23865.1502
    1000.08861.43174.6515
     
    0.08761.45574.5990
    下载: 导出CSV

    .   Table 2 Peak values of mean concentration distributions for different values ofα and Da at τ=1

    Daαmα=0.001α=0.01α=0.1α=0.3α=0.5α=1α=3α=5α=10
    0.10.51541.65280.82380.31900.23690.22670.24420.38200.52230.8395
    10.65881.98681.63130.86660.64970.60810.61630.80270.97671.3253
    101.23862.03261.93891.44041.10110.98610.90560.98921.12761.4368
    下载: 导出CSV

    .   Table 3 Peak values ofR with increasing α, where τ=1

    Daα=0 α=0.001α=0.01α=0.1α=0.3α=0.5α=1α=3α=5α=10
    0.140.3235.9430.9730.4230.6931.0532.2239.8249.6272.45
    140.3239.7436.5533.6435.3337.4743.1262.7876.5298.33
    1040.3240.3140.2241.2644.9448.1854.8872.7184.41103.34
    1540.3240.3340.4142.0845.9449.1655.7273.2084.77103.55
    下载: 导出CSV
  • [[1]] M. R. Davidson, and R. C. Schroter, A theoretical model of absorption of gases by the bronchial wall, J. Fluid Mech. 129, 313 (1983).
    [[2]] J. B. Grotberg, B. V. Sheth, and L. F. Mockros, An analysis of pollutant gas transport and absorption in pulmonary airways, J. Biomech. Eng. 112, 168 (1990).
    [[3]] A. Sarkar, and G. Jayaraman, The effect of wall absorption on dispersion in annular flows, Acta Mech. 158, 105 (2002).
    [[4]] H. B. Fischer, Longitudinal dispersion and turbulent mixing in open-channel flow, Annu. Rev. Fluid Mech. 5, 59 (1973).
    [[5]] H. B. Fischer, Mixing and dispersion in estuaries, Annu. Rev. Fluid Mech. 8, 107 (1976).
    [[6]] H. B. Fischer, E. J. List, R. C. Y. Koh, J. Imberger, and N. H. Brooks, Mixing in Inland and Coastal Waters (Academic Press, New York, 1979)
    [[7]] Z. Wu, Z. Li, and G. Q. Chen, Multi-scale analysis for environmental dispersion in wetland flow, Commun. Nonlinear Sci. Numer. Simul. 16, 3168 (2011).
    [[8]] Z. Wu, L. Zeng, G. Q. Chen, Z. Li, L. Shao, P. Wang, and Z. Jiang, Environmental dispersion in a tidal flow through a depth-dominated wetland, Commun. Nonlinear Sci. Numer. Simul. 17, 5007 (2012).
    [[9]] Z. Wu, L. Zeng, and G. Q. Chen, in Analytical modeling for environmental dispersion in wetland: Developments in Environmental Modelling, edited by S. E. Jø rgensen, N. B. Chang, and F. L. Xu (Elsevier, 2014), pp. 251-274
    [[10]] P. Wang, and G. Q. Chen, Solute dispersion in open channel flow with bed absorption, J. Hydrol. 543, 208 (2016).
    [[11]] A. Shankar, and A. M. Lenhoff, Dispersion and partitioning in short coated tubes, Ind. Eng. Chem. Res. 30, 828 (1991).
    [[12]] F. P. Carvalho, J. P. Villeneuve, C. Cattini, J. Rendón, and J. M. de Oliveira, Ecological risk assessment of PCBs and other organic contaminant residues in Laguna de Terminos, Mexico, Ecotoxicology 18, 403 (2009).
    [[13]] G. I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. R. Soc. Lond. A 219, 186 (1953).
    [[14]] R. Aris, On the dispersion of a solute in a fluid flowing through a tube, Proc R Soc Lond A 235, 67–77 (1956).
    [[15]] T. Takahashi, T. Korenaga, and F. Shen, A numerical solution for the dispersion in laminar flow through a circular tube, Can. J. Chem. Eng. 68, 191 (1990).
    [[16]] A. N. Stokes, and N. G. Barton, The concentration distribution produced by shear dispersion of solute in Poiseuille flow, J. Fluid Mech. 210, 201 (1990).
    [[17]] K. Ekambara, and J. B. Joshi, Axial mixing in laminar pipe flows, Chem. Eng. Sci. 59, 3929 (2004).
    [[18]] M. W. Lau, and C. O. Ng, On the early development of dispersion in flow through a tube with wall reactions, Int. J. Mech. Aerosp. Ind. Mech. Manuf. Eng. 1, 485 (2007).
    [[19]] K. K. Mondal, S. Dhar, and B. S. Mazumder, On dispersion of solute in steady flow through a channel with absorption boundary: an application to sewage dispersion, Theor. Comput. Fluid Dyn. 34, 643 (2020).
    [[20]] S. Dhar, N. Poddar, R. R. Kairi, B. S. Mazumder, and K. K. Mondal, Numerical study on dispersion of fine settling particles in a depth dominated wetland flow, Commun. Nonlinear Sci. Numer. Simul. 96, 105707 (2021).
    [[21]] R. Aris, On the dispersion of a solute in pulsating flow through a tube, Proc. R. Soc. Lond. A 259, 370 (1960).
    [[22]] W. N. Gill, A note on the solution of transient dispersion problems, Proc. R. Soc. Lond. A 298, 335 (1967).
    [[23]] W. N. Gill, Exact analysis of unsteady convective diffusion, Proc. R. Soc. Lond. A 316, 341 (1970).
    [[24]] W. N. Gill, Dispersion of a non-uniform slug in time-dependent flow, Proc. R. Soc. Lond. A 322, 101 (1971).
    [[25]] S. Paul, and C. O. Ng, On the time development of dispersion in electroosmotic flow through a rectangular channel, Acta Mech. Sin. 28, 631 (2012).
    [[26]] J. Rana, and P. V. S. N. Murthy, Unsteady solute dispersion in non-Newtonian fluid flow in a tube with wall absorption, Proc. R. Soc. A. 472, 20160294 (2016).
    [[27]] S. Paul, and B. S. Mazumder, Effects of nonlinear chemical reactions on the transport coefficients associated with steady and oscillatory flows through a tube, Int. J. Heat Mass Transfer 54, 75 (2011).
    [[28]] S. Barik, and D. C. Dalal, On transport coefficients in an oscillatory Couette flow with nonlinear chemical decay reactions, Acta Mech. 228, 2391 (2017).
    [[29]] H. Wang, Z. Zhu, S. Li, and W. Huai, Solute dispersion in wetland flows with bed absorption, J. Hydrol. 579, 124149 (2019).
    [[30]] A. K. Roy, A. K. Saha, and S. Debnath, Effect of multiple reactions on the transport coefficients in pulsatile flow through an annulus, Int. Commun. Heat Mass Transfer 110, 104369 (2020).
    [[31]] N. Poddar, S. Dhar, B. S. Mazumder, and K. K. Mondal, An exact analysis of scalar transport in hydromagnetic flow between two parallel plates: a multi-scale approach, Proc. R. Soc. A. 477, rspa.2020.0830(2021).
    [[32]] R. Smith, A delay-diffusion description for contaminant dispersion, J. Fluid Mech. 105, 469 (1981).
    [[33]] J. W. Westhaver, Theory of open-tube distillation columns, Ind. Eng. Chem. 34, 126 (1942).
    [[34]] R. Aris, On the dispersion of a solute by diffusion, convection and exchange between phases, Proc. R. Soc. Lond. A 252, 538 (1959).
    [[35]] C. G. Phillips, and S. R. Kaye, Approximate solutions for developing shear dispersion with exchange between phases, J. Fluid Mech. 374, 195 (1998).
    [[36]] C. O. Ng, and T. L. Yip, Effects of kinetic sorptive exchange on solute transport in open-channel flow, J. Fluid Mech. 446, 321 (2001).
    [[37]] C. O. Ng, and Y. C. Bai, Dispersion in oscillatory Couette flow with sorptive boundaries, Acta Mech. 178, 65 (2005).
    [[38]] C. O. Ng, Dispersion in steady and oscillatory flows through a tube with reversible and irreversible wall reactions, Proc. R. Soc. A. 462, 481 (2006).
    [[39]] C. O. Ng, Dispersion in open-channel flow subject to the processes of sorptive exchange on the bottom and air-water exchange on the free surface, Fluid Dyn. Res. 38, 359 (2006).
    [[40]] C. O. Ng, Chemical transport associated with discharge of contaminated fine particles to a steady open-channel flow, Phys. Fluids 12, 136 (2000).
    [[41]] P. C. Chatwin, The approach to normality of the concentration distribution of a solute in a solvent flowing along a straight pipe, J. Fluid Mech. 43, 321 (1970).
    [[42]] W. N. Gill, and V. Ananthakrishnan, Laminar dispersion in capillaries: Part IV. The slug stimulus, AIChE J. 13, 801 (1967).
    [[43]] L. Zeng, G. Q. Chen, H. S. Tang, and Z. Wu, Environmental dispersion in wetland flow, Commun. Nonlinear Sci. Numer. Simul. 16, 206 (2011).
    [[44]] B. Chen, Contaminant transport in a two-zone wetland: dispersion and ecological degradation, J. Hydrol. 488, 118 (2013).
    [[45]] L. Zeng, Y. J. Zhao, B. Chen, P. Ji, Y. H. Wu, and L. Feng, Longitudinal spread of bicomponent contaminant in wetland flow dominated by bank-wall effect, J. Hydrol. 509, 179 (2014).
    [[46]] Z. Wu, and G. Q. Chen, Axial diffusion effect on concentration dispersion, Int. J. Heat Mass Transfer 84, 571 (2015).
    [[47]] Z. Wu, and G. Q. Chen, Approach to transverse uniformity of concentration distribution of a solute in a solvent flowing along a straight pipe, J. Fluid Mech. 740, 196 (2014).
    [[48]] Z. Wu, and G. Q. Chen, Analytical solution for scalar transport in open channel flow: slow-decaying transient effect, J. Hydrol. 519, 1974 (2014).
    [[49]] C. C. Mei, J. L. Auriault, and C. O. Ng, Some applications of the homogenization theory, Adv. Appl. Mech. 32, 277 (1996).
    [[50]] C. C. Mei, and B. Vernescu, Homogenization Methods for Multiscale Mechanics, (World Scientific, Singapore, 2010)
    [[51]] H. C. W. Chu, S. Garoff, T. M. Przybycien, R. D. Tilton, and A. S. Khair, Dispersion in steady and time-oscillatory two-dimensional flows through a parallel-plate channel, Phys. Fluids 31, 022007 (2019).
    [[52]] H. C. W. Chu, S. Garoff, R. D. Tilton, and A. S. Khair, Dispersion in steady and time-oscillatory flows through an eccentric annulus, AIChE J 66, (2020).
    [[53]] S. Barik, and D. C. Dalal, Transverse concentration distribution in an open channel flow with bed absorption: a multi-scale approach, Commun. Nonlinear Sci. Numer. Simul. 65, 1 (2018).
    [[54]] C. O. Ng, and N. Rudraiah, Convective diffusion in steady flow through a tube with a retentive and absorptive wall, Phys. Fluids 20, 073604 (2008).
    [[55]] G. Ramon, Y. Agnon, and C. Dosoretz, Solute dispersion in oscillating electro-osmotic flow with boundary mass exchange, Microfluid Nanofluid 10, 97 (2011).
    [[56]] S. Barik, and D. C. Dalal, Multi-scale analysis for concentration distribution in an oscillatory Couette flow, Proc. R. Soc. A. 475, 20180483 (2019).
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  47
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 录用日期:  2021-11-08
  • 网络出版日期:  2022-08-01
  • 发布日期:  2022-01-28
  • 刊出日期:  2022-03-01

目录

    /

    返回文章
    返回