Coordinated motion of molecular motors on DNA chains with branch topology
doi: 10.1007/s10409-021-09045-x
-
摘要: 为理解整合了DNA马达的响应性DNA水凝胶的宏观力学行为, 文章在分子水平上构建了单个FtsKC在单个DNA链上的易位过程状态图, 并进一步研究了具有不同分支拓扑的DNA链上单个或多个FtsKC马达的运动. 研究表明, 多个FtsKC马达可以协调运动, 这主要是由于单个FtsKC马达的力响应行为. 文章进一步指出FtsKC马达结合特定分支拓扑的DNA链作为水凝胶中的应变传感器的潜在应用.Abstract: To understand the macroscopic mechanical behaviors of responsive DNA hydrogels integrated with DNA motors, we constructed a state map for the translocation process of a single FtsKC on a single DNA chain at the molecular level and then investigated the movement of single or multiple FtsKC motors on DNA chains with varied branch topologies. Our studies indicate that multiple FtsKC motors can have coordinated motion, which is mainly due to the force-responsive behavior of individual FtsKC motors. We further suggest the potential application of motors of FtsKC, together with DNA chains of specific branch topology, to serve as strain sensors in hydrogels.
-
Key words:
- DNA /
- Molecular motor /
- Coordinated motion /
- Branch topology /
- Strain sensor
-
1. Kinetic model of FtsKC translocation to a single DNA chain. a Illustration of five 1st level kinetic states (I-V) within a DNA-FtsKC interaction cycle. b Five 1st level kinetic states (I-V) are assigned to a FtsKC motor within a DNA-FtsKC interaction cycle. c Five 2nd level states (1-5) exist between state I and state II. d When the motor is in state IV, it randomly switches the translocating direction, which can be either forward or backward.
2. Schematic diagram of the measurement of FtsKC translocation on a single DNA chain. a In the experiment, each end of a DNA chain was attached to a bead. One bead was held by suction through a micropipette. Shortening of a DNA chain caused by translocation of a motor results from the formation of an expanding DNA loop [31]. When the motor translocates in the forward direction, the loop expands, and when the motor translocates in the backward direction, the loop shrinks. b Evolution of the extension of a DNA chain with time caused by the translocation of a single FtsKC. The black curve represents the experimental result [31], and curves of other colors are simulated results with the Monte Carlo method.
3. DNA chains with varied branch topology. a DNA chains with a linear topology. b DNA chains with a Y-shaped topology. c DNA chains with an X-shaped topology. d Deformation of DNA chains with a Y-shaped topology after a period of time. e Force-extension curve of a DNA chain calculated with the tWLC model. DNA is able to overstretch at Foverstretch. In the calculation, Lc =
13.6 μm, S = 1500 pN, C = 440 pN nm2, Foverstretch = 60 pN.5. a-c DNA chains with a linear topology: a the variation of the contour length of two DNA chains with time, b the variation of force on two DNA chains with time, c the variation of XO with time. d-f DNA chains with a Y-shaped topology: d the variation of the contour length of three DNA chains with time, e the variation of force on three DNA chains with time, f the variation of XO and YO with time. g-i DNA chains with an X-shaped topology: g the variation of the contour length of four DNA chains with time, h the variation of force on three DNA chains with time, i the variation of XO and YO with time.
6. a The total displacement of the motor, X(∆t), is the sum of the displacement of the motor due to the change in the initial length when the contour length changes, X1(∆t), and the displacement of the motor due to the change in the elastic stretch, X2(∆t). b Illustration of DNA chains together with FtsKC that can be built within a hydrogel to measure the local stretches when subjected to hydrostatic pressure.
Table 1. Comparison of KI,II between the simulation and the experiment
Experiment/Simulation Concentration of motor monomer (nM) Average time required for the formation of 10000 FtsKC hexamer (s) KI,II (s−1) Experiment 75-150 5.5 0.182 Simulated 75 10.56 0.095 100 3.76 0.266 150 1.05 0.952 Table 2. Correlation analysis of the experimental results and simulated results
Experiment/Simulation Pearson correlation coefficient Experiment [31] −0.856 Simulation 1 −0.976 Simulation 2 −0.775 Simulation 3 −0.943 Simulation 4 −0.979 -
[1] C. A. Hong, J. C. Park, H. Na, H. Jeon, and Y. S. Nam, Short DNA-catalyzed formation of quantum dot-DNA hydrogel for enzyme-free femtomolar specific DNA assay, Biosens. Bioelectron. 182, 113110 33812283(2021). [2] Q. Zhang, X. Liu, L. Duan, and G. Gao, A DNA-inspired hydrogel mechanoreceptor with skin-like mechanical behavior, J. Mater. Chem. A 9, 1835 (2021). [3] H. S. Kim, N. Abbas, and S. Shin, A rapid diagnosis of SARS-CoV-2 using DNA hydrogel formation on microfluidic pores, Biosens. Bioelectron. 177, 113005 33486135(2021). [4] F. Mo, K. Jiang, D. Zhao, Y. Wang, J. Song, and W. Tan, DNA hydrogel-based gene editing and drug delivery systems, Adv. Drug Deliver. Rev. 168, 79 32712197(2021). [5] S. Khajouei, H. Ravan, and A. Ebrahimi, Developing a colorimetric nucleic acid-responsive DNA hydrogel using DNA proximity circuit and catalytic hairpin assembly, Anal. Chim. Acta 1137, 1 33153592(2020). [6] Y. Bi, X. Du, P. He, C. Wang, C. Liu, and W. Guo, Smart bilayer polyacrylamide/DNA hybrid hydrogel film actuators exhibiting programmable responsive and reversible macroscopic shape deformations, Small 16, 1906998 32985098(2020). [7] M. L. Zhao, W. J. Zeng, Y. Q. Chai, R. Yuan, and Y. Zhuo, An affinity-enhanced DNA intercalator with intense ECL embedded in DNA hydrogel for biosensing applications, Anal. Chem. 92, 11044 32677426(2020). [8] N. Xu, N. Ma, X. Yang, G. Ling, J. Yu, and P. Zhang, Preparation of intelligent DNA hydrogel and its applications in biosensing, Eur. Polym. J. 137, 109951 (2020). [9] X. Gao, X. Li, X. Sun, J. Zhang, Y. Zhao, X. Liu, and F. Li, DNA tetrahedra-cross-linked hydrogel functionalized paper for onsite analysis of DNA methyltransferase activity using a personal glucose meter, Anal. Chem. 92, 4592 32081006(2020). [10] J. Y. Wang, Q. Y. Guo, Z. Y. Yao, N. Yin, S. Y. Ren, Y. Li, S. Li, Y. Peng, J. L. Bai, B. A. Ning, J. Liang, and Z. X. Gao, A low-field nuclear magnetic resonance DNA-hydrogel nanoprobe for bisphenol A determination in drinking water, Microchim. Acta 187, 333 32415377(2020). [11] G. Urtel, A. Estevez-Torres, and J. C. Galas, DNA-based long-lived reaction-diffusion patterning in a host hydrogel, Soft Matter 15, 9343 31693052(2019). [12] Y. Ke, Y. Liu, J. Zhang, and H. Yan, A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures, J. Am. Chem. Soc. 128, 4414 16569019(2015). [13] Y. Lin, X. Wang, Y. Sun, Y. Dai, W. Sun, X. Zhu, H. Liu, R. Han, D. Gao, and C. Luo, A chemiluminescent biosensor for ultrasensitive detection of adenosine based on target-responsive DNA hydrogel with Au@HKUST-1 encapsulation, Sens. Actuat. B-Chem. 289, 56 (2019). [14] F. Li, J. Tang, J. Geng, D. Luo, and D. Yang, Polymeric DNA hydrogel: design, synthesis and applications, Prog. Polym. Sci. 98, 101163 (2019). [15] H. Song, Y. Zhang, P. Cheng, X. Chen, Y. Luo, and W. Xu, A rapidly self-assembling soft-brush DNA hydrogel based on RCA products, Chem. Commun. 55, 5375 30994649(2019). [16] Z. Xing, A. Caciagli, T. Cao, I. Stoev, M. Zupkauskas, T. O’Neill, T. Wenzel, R. Lamboll, D. Liu, and E. Eiser, Microrheology of DNA hydrogels, Proc. Natl. Acad. Sci. 115, 8137 30045862(2018). [17] X. Zhou, C. Li, Y. Shao, C. Chen, Z. Yang, and D. Liu, Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor, Chem. Commun. 52, 10668 27506763(2016). [18] J. B. Lee, S. Peng, D. Yang, Y. H. Roh, H. Funabashi, N. Park, E. J. Rice, L. Chen, R. Long, M. Wu, and D. Luo, A mechanical metamaterial made from a DNA hydrogel, Nat. Nanotech. 7, 816 23202472(2012). [19] H. Qi, M. Ghodousi, Y. Du, C. Grun, H. Bae, P. Yin, and A. Khademhosseini, DNA-directed self-assembly of shape-controlled hydrogels, Nat. Commun. 4, 2275 24013352(2013). [20] O. J. N. Bertrand, D. K. Fygenson, and O. A. Saleh, Active, motor-driven mechanics in a DNA gel, Proc. Natl. Acad. Sci. 109, 17342 23045635(2012). [21] D. J. Sherratt, L. K. Arciszewska, E. Crozat, J. E. Graham, and I. Grainge, The Escherichia coli, Biochem. Soc. Trans. 38, 395 20298190(2010). [22] J. E. Graham, D. J. Sherratt, and M. D. Szczelkun, Sequence-specific assembly of FtsK hexamers establishes directional translocation on DNA, Proc. Natl. Acad. Sci. 107, 20263 21048089(2010). [23] S. Bigot, O. A. Saleh, F. Cornet, J. F. Allemand, and F. X. Barre, Oriented loading of FtsK on KOPS, Nat. Struct. Mol. Biol. 13, 1026 17041597(2006). [24] S. Bigot, O. A. Saleh, C. Lesterlin, C. Pages, M. El Karoui, C. Dennis, M. Grigoriev, J. F. Allemand, F. X. Barre, and F. Cornet, KOPS: DNA motifs that control E. coli, EMBO J 24, 3770 16211009(2005). [25] O. A. Saleh, C. Pérals, F. X. Barre, and J. F. Allemand, Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment, EMBO J 23, 2430 15167891(2004). [26] J. L. Ptacin, M. Nöllmann, C. Bustamante, and N. R. Cozzarelli, Identification of the FtsK sequence-recognition domain, Nat Struct Mol Biol 13, 1023 17041598(2006). [27] S. Bigot, V. Sivanathan, C. Possoz, F. X. Barre, and F. Cornet, FtsK, a literate chromosome segregation machine, Mol. Microbiol. 64, 1434 17511809(2007). [28] D. Chowdhury, Stochastic mechano-chemical kinetics of molecular motors: a multidisciplinary enterprise from a physicist's perspective, Phys. Rep. 529, 1 (2013). [29] E. Crozat, A. Meglio, J. F. Allemand, C. E. Chivers, M. Howarth, C. Vénien-Bryan, I. Grainge, and D. J. Sherratt, Separating speed and ability to displace roadblocks during DNA translocation by FtsK, EMBO J 29, 1423 20379135(2010). [30] J. E. Graham, V. Sivanathan, D. J. Sherratt, and L. K. Arciszewska, FtsK translocation on DNA stops at XerCD-dif, Nucleic Acids Res. 38, 72 19854947(2010). [31] P. J. Pease, O. Levy, G. J. Cost, J. Gore, J. L. Ptacin, D. Sherratt, C. Bustamante, and N. R. Cozzarelli, Sequence-directed DNA translocation by purified FtsK, Science 307, 586 15681387(2005). [32] A. Kunwar, and A. Mogilner, Robust transport by multiple motors with nonlinear force-velocity relations and stochastic load sharing, Phys. Biol. 7, 016012 20147778(2010). [33] P. Gross, N. Laurens, L. B. Oddershede, U. Bockelmann, E. J. G. Peterman, and G. J. L. Wuite, Quantifying how DNA stretches, melts and changes twist under tension, Nat. Phys. 7, 731 (2011). [34] M. K. Kuimova, Mapping viscosity in cells using molecular rotors, Phys. Chem. Chem. Phys. 14, 12671 22806312(2012). [35] E. C. Fieller, H. O. Hartley, and E. S. Pearson, Tests for rank correlation coefficients. I, Biometrika 44, 470 (1957). [36] J. F. Marko, Stretching must twist DNA, Europhys. Lett. 38, 183 (1997). [37] T. A. J. Duke, Molecular model of muscle contraction, Proc. Natl. Acad. Sci. 96, 2770 10077586(1999). [38] J. Y. Lee, I. J. Finkelstein, L. K. Arciszewska, D. J. Sherratt, and E. C. Greene, Single-molecule imaging of FtsK translocation reveals mechanistic features of protein-protein collisions on DNA, Mol. Cell 54, 832 24768536(2014). [39] T. C. B. McLeish, Tube theory of entangled polymer dynamics, Adv. Phys. 51, 1379 (2002). [40] S. Weerakoon, and T. G. I. Fernando, A variant of Newton′s method with accelerated third-order convergence, Appl. Math. Lett. 13, 87 (2000). [41] B. Chen, Self-regulation of motor force through chemomechanical coupling in skeletal muscle contraction, J. Appl. Mech. 80, 051013 (2013). [42] B. Chen, and C. Dong, Modeling Deoxyribose Nucleic Acid as an elastic rod inlaid with fibrils, J. Appl. Mech. 81, 071005 (2014). [43] C. Dong, and B. Chen, Coupling of bond breaking with state transition leads to high apparent detachment rates of a single Myosin, J. Appl. Mech. 83, 051011 (2016). [44] X. Chen, and B. Chen, Simplified analysis for the association of a constrained receptor to an oscillating ligand, J. Appl. Mech. 83, 091006 (2016).