留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coordinated motion of molecular motors on DNA chains with branch topology

Lu Di Chen Bin

鲁頔, 陈彬. 分支拓扑DNA链上分子马达的协调运动[J]. 机械工程学报, 2022, 38(3): 621225. doi: 10.1007/s10409-021-09045-x
引用本文: 鲁頔, 陈彬. 分支拓扑DNA链上分子马达的协调运动[J]. 机械工程学报, 2022, 38(3): 621225. doi: 10.1007/s10409-021-09045-x
D. Lu, and B. Chen,Coordinated motion of molecular motors on DNA chains with branch topology. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09045-x'>https://doi.org/10.1007/s10409-021-09045-x
Citation: D. Lu, and B. Chen,Coordinated motion of molecular motors on DNA chains with branch topology. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09045-x">https://doi.org/10.1007/s10409-021-09045-x

Coordinated motion of molecular motors on DNA chains with branch topology

doi: 10.1007/s10409-021-09045-x
Funds: 

the National Natural Science Foundation of China Grant

More Information
  • 摘要: 为理解整合了DNA马达的响应性DNA水凝胶的宏观力学行为, 文章在分子水平上构建了单个FtsKC在单个DNA链上的易位过程状态图, 并进一步研究了具有不同分支拓扑的DNA链上单个或多个FtsKC马达的运动. 研究表明, 多个FtsKC马达可以协调运动, 这主要是由于单个FtsKC马达的力响应行为. 文章进一步指出FtsKC马达结合特定分支拓扑的DNA链作为水凝胶中的应变传感器的潜在应用.

     

  • 1.  Kinetic model of FtsKC translocation to a single DNA chain. a Illustration of five 1st level kinetic states (I-V) within a DNA-FtsKC interaction cycle. b Five 1st level kinetic states (I-V) are assigned to a FtsKC motor within a DNA-FtsKC interaction cycle. c Five 2nd level states (1-5) exist between state I and state II. d When the motor is in state IV, it randomly switches the translocating direction, which can be either forward or backward.

    2.  Schematic diagram of the measurement of FtsKC translocation on a single DNA chain. a In the experiment, each end of a DNA chain was attached to a bead. One bead was held by suction through a micropipette. Shortening of a DNA chain caused by translocation of a motor results from the formation of an expanding DNA loop [31]. When the motor translocates in the forward direction, the loop expands, and when the motor translocates in the backward direction, the loop shrinks. b Evolution of the extension of a DNA chain with time caused by the translocation of a single FtsKC. The black curve represents the experimental result [31], and curves of other colors are simulated results with the Monte Carlo method.

    3.  DNA chains with varied branch topology. a DNA chains with a linear topology. b DNA chains with a Y-shaped topology. c DNA chains with an X-shaped topology. d Deformation of DNA chains with a Y-shaped topology after a period of time. e Force-extension curve of a DNA chain calculated with the tWLC model. DNA is able to overstretch at Foverstretch. In the calculation, Lc = 13.6 μm, S = 1500 pN, C = 440 pN nm2, Foverstretch = 60 pN.

    4.  Flow chart of the simulation.

    5.  a-c DNA chains with a linear topology: a the variation of the contour length of two DNA chains with time, b the variation of force on two DNA chains with time, c the variation of XO with time. d-f DNA chains with a Y-shaped topology: d the variation of the contour length of three DNA chains with time, e the variation of force on three DNA chains with time, f the variation of XO and YO with time. g-i DNA chains with an X-shaped topology: g the variation of the contour length of four DNA chains with time, h the variation of force on three DNA chains with time, i the variation of XO and YO with time.

    6.  a The total displacement of the motor, X(∆t), is the sum of the displacement of the motor due to the change in the initial length when the contour length changes, X1(∆t), and the displacement of the motor due to the change in the elastic stretch, X2(∆t). b Illustration of DNA chains together with FtsKC that can be built within a hydrogel to measure the local stretches when subjected to hydrostatic pressure.

    Table 1.   Comparison of KI,II between the simulation and the experiment

    Experiment/SimulationConcentration of motor monomer (nM)Average time required for the formation of 10000 FtsKC hexamer (s)KI,II (s−1)
    Experiment 75-1505.50.182
    Simulated 7510.560.095
    1003.760.266
    1501.050.952
    下载: 导出CSV

    Table 2.   Correlation analysis of the experimental results and simulated results

    Experiment/SimulationPearson correlation coefficient
    Experiment [31]−0.856
    Simulation 1−0.976
    Simulation 2−0.775
    Simulation 3−0.943
    Simulation 4−0.979
    下载: 导出CSV
  • [1] C. A. Hong, J. C. Park, H. Na, H. Jeon, and Y. S. Nam, Short DNA-catalyzed formation of quantum dot-DNA hydrogel for enzyme-free femtomolar specific DNA assay, Biosens. Bioelectron. 182, 113110 33812283(2021).
    [2] Q. Zhang, X. Liu, L. Duan, and G. Gao, A DNA-inspired hydrogel mechanoreceptor with skin-like mechanical behavior, J. Mater. Chem. A 9, 1835 (2021).
    [3] H. S. Kim, N. Abbas, and S. Shin, A rapid diagnosis of SARS-CoV-2 using DNA hydrogel formation on microfluidic pores, Biosens. Bioelectron. 177, 113005 33486135(2021).
    [4] F. Mo, K. Jiang, D. Zhao, Y. Wang, J. Song, and W. Tan, DNA hydrogel-based gene editing and drug delivery systems, Adv. Drug Deliver. Rev. 168, 79 32712197(2021).
    [5] S. Khajouei, H. Ravan, and A. Ebrahimi, Developing a colorimetric nucleic acid-responsive DNA hydrogel using DNA proximity circuit and catalytic hairpin assembly, Anal. Chim. Acta 1137, 1 33153592(2020).
    [6] Y. Bi, X. Du, P. He, C. Wang, C. Liu, and W. Guo, Smart bilayer polyacrylamide/DNA hybrid hydrogel film actuators exhibiting programmable responsive and reversible macroscopic shape deformations, Small 16, 1906998 32985098(2020).
    [7] M. L. Zhao, W. J. Zeng, Y. Q. Chai, R. Yuan, and Y. Zhuo, An affinity-enhanced DNA intercalator with intense ECL embedded in DNA hydrogel for biosensing applications, Anal. Chem. 92, 11044 32677426(2020).
    [8] N. Xu, N. Ma, X. Yang, G. Ling, J. Yu, and P. Zhang, Preparation of intelligent DNA hydrogel and its applications in biosensing, Eur. Polym. J. 137, 109951 (2020).
    [9] X. Gao, X. Li, X. Sun, J. Zhang, Y. Zhao, X. Liu, and F. Li, DNA tetrahedra-cross-linked hydrogel functionalized paper for onsite analysis of DNA methyltransferase activity using a personal glucose meter, Anal. Chem. 92, 4592 32081006(2020).
    [10] J. Y. Wang, Q. Y. Guo, Z. Y. Yao, N. Yin, S. Y. Ren, Y. Li, S. Li, Y. Peng, J. L. Bai, B. A. Ning, J. Liang, and Z. X. Gao, A low-field nuclear magnetic resonance DNA-hydrogel nanoprobe for bisphenol A determination in drinking water, Microchim. Acta 187, 333 32415377(2020).
    [11] G. Urtel, A. Estevez-Torres, and J. C. Galas, DNA-based long-lived reaction-diffusion patterning in a host hydrogel, Soft Matter 15, 9343 31693052(2019).
    [12] Y. Ke, Y. Liu, J. Zhang, and H. Yan, A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures, J. Am. Chem. Soc. 128, 4414 16569019(2015).
    [13] Y. Lin, X. Wang, Y. Sun, Y. Dai, W. Sun, X. Zhu, H. Liu, R. Han, D. Gao, and C. Luo, A chemiluminescent biosensor for ultrasensitive detection of adenosine based on target-responsive DNA hydrogel with Au@HKUST-1 encapsulation, Sens. Actuat. B-Chem. 289, 56 (2019).
    [14] F. Li, J. Tang, J. Geng, D. Luo, and D. Yang, Polymeric DNA hydrogel: design, synthesis and applications, Prog. Polym. Sci. 98, 101163 (2019).
    [15] H. Song, Y. Zhang, P. Cheng, X. Chen, Y. Luo, and W. Xu, A rapidly self-assembling soft-brush DNA hydrogel based on RCA products, Chem. Commun. 55, 5375 30994649(2019).
    [16] Z. Xing, A. Caciagli, T. Cao, I. Stoev, M. Zupkauskas, T. O’Neill, T. Wenzel, R. Lamboll, D. Liu, and E. Eiser, Microrheology of DNA hydrogels, Proc. Natl. Acad. Sci. 115, 8137 30045862(2018).
    [17] X. Zhou, C. Li, Y. Shao, C. Chen, Z. Yang, and D. Liu, Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor, Chem. Commun. 52, 10668 27506763(2016).
    [18] J. B. Lee, S. Peng, D. Yang, Y. H. Roh, H. Funabashi, N. Park, E. J. Rice, L. Chen, R. Long, M. Wu, and D. Luo, A mechanical metamaterial made from a DNA hydrogel, Nat. Nanotech. 7, 816 23202472(2012).
    [19] H. Qi, M. Ghodousi, Y. Du, C. Grun, H. Bae, P. Yin, and A. Khademhosseini, DNA-directed self-assembly of shape-controlled hydrogels, Nat. Commun. 4, 2275 24013352(2013).
    [20] O. J. N. Bertrand, D. K. Fygenson, and O. A. Saleh, Active, motor-driven mechanics in a DNA gel, Proc. Natl. Acad. Sci. 109, 17342 23045635(2012).
    [21] D. J. Sherratt, L. K. Arciszewska, E. Crozat, J. E. Graham, and I. Grainge, The Escherichia coli, Biochem. Soc. Trans. 38, 395 20298190(2010).
    [22] J. E. Graham, D. J. Sherratt, and M. D. Szczelkun, Sequence-specific assembly of FtsK hexamers establishes directional translocation on DNA, Proc. Natl. Acad. Sci. 107, 20263 21048089(2010).
    [23] S. Bigot, O. A. Saleh, F. Cornet, J. F. Allemand, and F. X. Barre, Oriented loading of FtsK on KOPS, Nat. Struct. Mol. Biol. 13, 1026 17041597(2006).
    [24] S. Bigot, O. A. Saleh, C. Lesterlin, C. Pages, M. El Karoui, C. Dennis, M. Grigoriev, J. F. Allemand, F. X. Barre, and F. Cornet, KOPS: DNA motifs that control E. coli, EMBO J 24, 3770 16211009(2005).
    [25] O. A. Saleh, C. Pérals, F. X. Barre, and J. F. Allemand, Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment, EMBO J 23, 2430 15167891(2004).
    [26] J. L. Ptacin, M. Nöllmann, C. Bustamante, and N. R. Cozzarelli, Identification of the FtsK sequence-recognition domain, Nat Struct Mol Biol 13, 1023 17041598(2006).
    [27] S. Bigot, V. Sivanathan, C. Possoz, F. X. Barre, and F. Cornet, FtsK, a literate chromosome segregation machine, Mol. Microbiol. 64, 1434 17511809(2007).
    [28] D. Chowdhury, Stochastic mechano-chemical kinetics of molecular motors: a multidisciplinary enterprise from a physicist's perspective, Phys. Rep. 529, 1 (2013).
    [29] E. Crozat, A. Meglio, J. F. Allemand, C. E. Chivers, M. Howarth, C. Vénien-Bryan, I. Grainge, and D. J. Sherratt, Separating speed and ability to displace roadblocks during DNA translocation by FtsK, EMBO J 29, 1423 20379135(2010).
    [30] J. E. Graham, V. Sivanathan, D. J. Sherratt, and L. K. Arciszewska, FtsK translocation on DNA stops at XerCD-dif, Nucleic Acids Res. 38, 72 19854947(2010).
    [31] P. J. Pease, O. Levy, G. J. Cost, J. Gore, J. L. Ptacin, D. Sherratt, C. Bustamante, and N. R. Cozzarelli, Sequence-directed DNA translocation by purified FtsK, Science 307, 586 15681387(2005).
    [32] A. Kunwar, and A. Mogilner, Robust transport by multiple motors with nonlinear force-velocity relations and stochastic load sharing, Phys. Biol. 7, 016012 20147778(2010).
    [33] P. Gross, N. Laurens, L. B. Oddershede, U. Bockelmann, E. J. G. Peterman, and G. J. L. Wuite, Quantifying how DNA stretches, melts and changes twist under tension, Nat. Phys. 7, 731 (2011).
    [34] M. K. Kuimova, Mapping viscosity in cells using molecular rotors, Phys. Chem. Chem. Phys. 14, 12671 22806312(2012).
    [35] E. C. Fieller, H. O. Hartley, and E. S. Pearson, Tests for rank correlation coefficients. I, Biometrika 44, 470 (1957).
    [36] J. F. Marko, Stretching must twist DNA, Europhys. Lett. 38, 183 (1997).
    [37] T. A. J. Duke, Molecular model of muscle contraction, Proc. Natl. Acad. Sci. 96, 2770 10077586(1999).
    [38] J. Y. Lee, I. J. Finkelstein, L. K. Arciszewska, D. J. Sherratt, and E. C. Greene, Single-molecule imaging of FtsK translocation reveals mechanistic features of protein-protein collisions on DNA, Mol. Cell 54, 832 24768536(2014).
    [39] T. C. B. McLeish, Tube theory of entangled polymer dynamics, Adv. Phys. 51, 1379 (2002).
    [40] S. Weerakoon, and T. G. I. Fernando, A variant of Newton′s method with accelerated third-order convergence, Appl. Math. Lett. 13, 87 (2000).
    [41] B. Chen, Self-regulation of motor force through chemomechanical coupling in skeletal muscle contraction, J. Appl. Mech. 80, 051013 (2013).
    [42] B. Chen, and C. Dong, Modeling Deoxyribose Nucleic Acid as an elastic rod inlaid with fibrils, J. Appl. Mech. 81, 071005 (2014).
    [43] C. Dong, and B. Chen, Coupling of bond breaking with state transition leads to high apparent detachment rates of a single Myosin, J. Appl. Mech. 83, 051011 (2016).
    [44] X. Chen, and B. Chen, Simplified analysis for the association of a constrained receptor to an oscillating ligand, J. Appl. Mech. 83, 091006 (2016).
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  73
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 录用日期:  2021-06-25
  • 网络出版日期:  2022-08-01
  • 发布日期:  2022-02-16
  • 刊出日期:  2022-03-01

目录

    /

    返回文章
    返回