留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Extreme transmission of elastic metasurface for deep subwavelength focusing

Jiang Mu Zhou Hong-Tao Li Xiao-Shuang Fu Wen-Xiao Wang Yan-Feng Wang Yue-Sheng

蒋沐, 周红涛, 李晓双, 符文筱, 王艳锋, 汪越胜. 用于深亚波长聚焦的极端透射弹性波超构表面[J]. 机械工程学报, 2022, 38(3): 121497. doi: 10.1007/s10409-021-09073-z
引用本文: 蒋沐, 周红涛, 李晓双, 符文筱, 王艳锋, 汪越胜. 用于深亚波长聚焦的极端透射弹性波超构表面[J]. 机械工程学报, 2022, 38(3): 121497. doi: 10.1007/s10409-021-09073-z
M. Jiang, H. T. Zhou, X. S. Li, W. X. Fu, Y. F. Wang, and Y. S. Wang,Extreme transmission of elastic metasurface for deep subwavelength focusing. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09073-z'>https://doi.org/10.1007/s10409-021-09073-z
Citation: M. Jiang, H. T. Zhou, X. S. Li, W. X. Fu, Y. F. Wang, and Y. S. Wang,Extreme transmission of elastic metasurface for deep subwavelength focusing. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09073-z">https://doi.org/10.1007/s10409-021-09073-z

Extreme transmission of elastic metasurface for deep subwavelength focusing

doi: 10.1007/s10409-021-09073-z
Funds: 

the National Natural Science Foundation of China Grant

Y.-F. Wang also acknowledges support by the Natural Science Foundation of Tianjin 20JCQNJC01030

More Information
  • 摘要: 本文提出了由之字形单元组成的弹性波超构表面来实现对弯曲波的深亚波长尺度操控. 通过遗传算法对单元进行参数优化, 可以找到具有全透射率和全相位控制的单元, 而其宽度仅为波长的1/5. 结合传输模态和Kirchhoff薄板理论, 发展了理论模型并解释了这些单元产生优越性能的原因. 接着, 设计了直线型和曲线型超构表面实现不同位置的弯曲波聚焦, 其仿真结果都显示出了优异的性能. 进一步加工制作直线型超构表面并进行实验测试, 实验结果与仿真结果非常吻合, 结果同时表明入射波能量在焦点处提高了6倍以上. 本工作提出的超构表面可用于设计紧凑高效的弹性波器件.

     

  • 1.  The elastic metasurface for focusing: a schematic diagram of the elastic metasurface, and b the cross-section of the functional unit, where the unit size (H and l) and the 13 adjustable geometric parameters are shown.

    2.  The schematic diagram of the strip with a unit for numerical and analytical calculations. x1x3 mark out the coordinates of the three evaluation points. The red arrows represent the direction of the incident and transmitted waves, and the blue arrow for the reflected waves.

    3.  a Out-of-plane displacement distributions normalized by A0 for the ten specific units obtained by numerical simulation. b Normalized phase shift ∆φ (red curve and scattered squares) and transmission η (blue curve and scattered circles) for the ten units. The numerical and analytical results are marked with scattered symbols and curves, respectively.

    4.  Schematic diagram of Fermat’s principle in two-dimension. Point P is the wave source and point Q is the targeted focal point after the wave passes through the metasurface.

    5.  a Out-of-plane displacement field distribution and b its normalized form for wave focusing by a flat metasurface. c and d show the normalized intensity fields at the focal point along the x- and y- directions from the simulation (blue curves) and the experiment (red dashed curves).

    6.  a Out-of-plane displacement field distribution and b its normalized form for the oblique focusing by a flat metasurface. The direction of the new coordinate system x′-y′ is defined by the focusing position. c and d show the normalized intensity fields at the focal point along the focusing direction (x′) and its vertical direction (y′) from the simulation.

    7.  The schematic of a the units’ arrangement and b the phase profile of the curved metasurface for focusing. The blue lines indicate the theoretical phase, and the red dots indicate the phase of the adopted units.

    8.  a Out-of-plane displacement field distribution and b its normalized form for the wave focusing by a curved metasurface. c and d show the normalized intensity fields at the focal point along the x- and y-directions from the simulation.

    9.  a The model diagram of the test piece at different scales. Eleven piezoelectric patches (PZT-5, 20 mm × 20 mm × 0.5 mm) are glued to the upper surface of the plate (Grade 304, 700 mm × 750 mm × 2 mm) with separation of 20 mm. The plate is engraved with a metasurface (475.9 mm × 11.2 mm) and the machining accuracy is 0.05 mm. b Experimental distributions of out-of-plane displacement measured at 6 kHz. The intersection of the longitudinal and transverse dashed lines marks the theoretical focal point. MAX is 64.46 nm.

    Table 1.   Geometric parameters of the basic unit (unit: mm)

    lHhi (i = 1-3)bi (i = 1-3)ri (i = 1-3)ti (i = 1-4)
    λ/5λ/4[bi, H−0.2][0.5, 2.2] [0.2, 5.8][0.5, H−0.2]
    下载: 导出CSV
  • [1] M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, 3D metamaterials, Nat. Rev. Phys 1, 198 (2019).
    [2] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Three-dimensional optical metamaterial with a negative refractive index, Nature 455, 376 18690249(2008).
    [3] Y. C. Zhang, Y. J. Liang, S. T. Liu, and Y. D. Su, A new design of dual-constituent triangular lattice metamaterial with unbounded thermal expansion, Acta Mech. Sin. 35, 507 (2019).
    [4] Y. Zhu, K. Donda, S. Fan, L. Cao, and B. Assouar, Broadband ultra-thin acoustic metasurface absorber with coiled structure, Appl. Phys. Express 12, 114002 (2019).
    [5] Y. Li, and B. M. Assouar, Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett. 108, 063502 (2016).
    [6] C. J. Naify, J. S. Rogers, M. D. Guild, C. A. Rohde, and G. J. Orris, Evaluation of the resolution of a metamaterial acoustic leaky wave antenna, J. Acoust. Soc. Am. 139, 3251 27369149(2016).
    [7] W. Liu, X. Sun, M. Gao, and S. Wang, Luneburg and flat lens based on graded photonic crystal, Opt. Commun. 364, 225 (2016).
    [8] C. M. Park, and S. H. Lee, An acoustic lens built with a low dispersion metamaterial, J. Appl. Phys. 117, 034904 (2015).
    [9] H. T. Chen, A. J. Taylor, and N. Yu, A review of metasurfaces: Physics and applications, Rep. Prog. Phys. 79, 076401 27308726(2016).
    [10] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334, 333 21885733(2011).
    [11] G. Su, and Y. Liu, Amplitude-modulated binary acoustic metasurface for perfect anomalous refraction, Appl. Phys. Lett. 117, 221901 (2020).
    [12] J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts, Nat. Commun. 9, 1342 29632385(2018).
    [13] Y. Li, X. Jiang, B. Liang, J. Cheng, and L. Zhang, Metascreen-based acoustic passive phased array, Phys. Rev. Appl. 4, 024003 (2015).
    [14] Y. Zhu, and B. Assouar, Multifunctional acoustic metasurface based on an array of Helmholtz resonators, Phys. Rev. B 99, 174109 (2019).
    [15] G. Y. Song, B. Huang, H. Y. Dong, Q. Cheng, and T. J. Cui, Broadband focusing acoustic lens based on fractal metamaterials, Sci. Rep. 6, 35929 27782216(2016).
    [16] F. Ju, W. Xiong, C. Liu, Y. Cheng, and X. Liu, Acoustic accelerating beam based on a curved metasurface, Appl. Phys. Lett. 114, 113507 (2019).
    [17] S. Zhao, Y. Hu, J. Lu, X. Qiu, J. Cheng, and I. Burnett, Delivering sound energy along an arbitrary convex trajectory, Sci. Rep. 4, 6628 25316353(2014).
    [18] H. T. Zhou, S. W. Fan, X. S. Li, W. X. Fu, Y. F. Wang, and Y. S. Wang, Tunable arc-shaped acoustic metasurface carpet cloak, Smart Mater. Struct. 29, 065016 (2020).
    [19] S. W. Fan, S. D. Zhao, L. Cao, Y. Zhu, A. L. Chen, Y. F. Wang, K. Donda, Y. S. Wang, and B. Assouar, Reconfigurable curved metasurface for acoustic cloaking and illusion, Phys. Rev. B 101, 024104 (2020).
    [20] F. Ma, Y. Xu, and J. H. Wu, Shell-type acoustic metasurface and arc-shape carpet cloak, Sci. Rep. 9, 8076 31147607(2019).
    [21] M. Zheng, C. I. Park, X. Liu, R. Zhu, G. Hu, and Y. Y. Kim, Non-resonant metasurface for broadband elastic wave mode splitting, Appl. Phys. Lett. 116, 171903 (2020).
    [22] L. Cao, Z. Yang, Y. Xu, S. W. Fan, Y. Zhu, Z. Chen, B. Vincent, and B. Assouar, Disordered elastic metasurfaces, Phys. Rev. Appl. 13, 014054 (2020).
    [23] J. Zhang, X. Zhang, F. Xu, X. Ding, M. Deng, N. Hu, and C. Zhang, Vibration control of flexural waves in thin plates by 3D-printed metasurfaces, J. Sound Vib. 481, 115440 (2020).
    [24] L. Cao, Z. Yang, Y. Xu, Z. Chen, Y. Zhu, S. W. Fan, K. Donda, B. Vincent, and B. Assouar, Pillared elastic metasurface with constructive interference for flexural wave manipulation, Mech. Syst. Signal Proc. 146, 107035 (2021).
    [25] S. M. Yuan, A. L. Chen, and Y. S. Wang, Switchable multifunctional fish-bone elastic metasurface for transmitted plate wave modulation, J. Sound Vib. 470, 115168 (2020).
    [26] H. Zhu, and F. Semperlotti, Anomalous refraction of acoustic guided waves in solids with geometrically tapered metasurfaces, Phys. Rev. Lett. 117, 034302 27472114(2016).
    [27] G. Su, Y. Zhang, Y. Liu, and T. Wang, Steering flexural waves by amplitude-shift elastic metasurfaces, J. Appl. Mech. 88, 051011 (2021).
    [28] H. Lee, J. K. Lee, H. M. Seung, and Y. Y. Kim, Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering, J. Mech. Phys. Solids 112, 577 (2018).
    [29] L. Cao, Z. Yang, and Y. Xu, Steering elastic SH waves in an anomalous way by metasurface, J. Sound Vib. 418, 1 (2018).
    [30] Y. C. Su, T. Chen, L. H. Ko, and M. H. Lu, Design of metasurfaces to enable shear horizontal wave trapping, J. Appl. Phys. 128, 175107 (2020).
    [31] Y. Liu, Z. Liang, F. Liu, O. Diba, A. Lamb, and J. Li, Source illusion devices for flexural lamb waves using elastic metasurfaces, Phys. Rev. Lett. 119, 034301 28777641(2017).
    [32] S. W. Lee, H. M. Seung, W. Choi, M. Kim, and J. H. Oh, Broad-angle refractive transmodal elastic metasurface, Appl. Phys. Lett. 117, 213502 (2020).
    [33] S. W. Lee, and J. H. Oh, Single-layer elastic metasurface with double negativity for anomalous refraction, J. Phys. D-Appl. Phys. 53, 265301 (2020).
    [34] S. Li, J. Xu, and J. Tang, Tunable modulation of refracted lamb wave front facilitated by adaptive elastic metasurfaces, Appl. Phys. Lett. 112, 021903 (2018).
    [35] K. Yi, M. Collet, M. Ichchou, and L. Li, Flexural waves focusing through shunted piezoelectric patches, Smart Mater. Struct. 25, 075007 (2016).
    [36] Y. Chen, X. Li, H. Nassar, G. Hu, and G. Huang, A programmable metasurface for real time control of broadband elastic rays, Smart Mater. Struct. 27, 115011 (2018).
    [37] S. Y. Kim, W. Lee, J. S. Lee, and Y. Y. Kim, Longitudinal wave steering using beam-type elastic metagratings, Mech. Syst. Signal Proc. 156, 107688 (2021).
    [38] M. Zheng, X. Liu, Y. Chen, H. Miao, R. Zhu, and G. Hu, Theory and realization of nonresonant anisotropic singly polarized solids carrying only shear waves, Phys. Rev. Appl. 12, 014027 (2019).
    [39] Z. Hou, X. Fang, Y. Li, and B. Assouar, Highly efficient acoustic metagrating with strongly coupled surface grooves, Phys. Rev. Appl. 12, 034021 (2019).
    [40] H. Ni, X. Fang, Z. Hou, Y. Li, and B. Assouar, High-efficiency anomalous splitter by acoustic meta-grating, Phys. Rev. B 100, 104104 (2019).
    [41] J. Rong, and W. Ye, Multifunctional elastic metasurface design with topology optimization, Acta Mater. 185, 382 (2020).
    [42] J. Rong, W. Ye, S. Zhang, and Y. Liu, Frequency-coded passive multifunctional elastic metasurfaces, Adv. Funct. Mater. 30, 2005285 (2020).
    [43] S. M. Yuan, A. L. Chen, L. Cao, H. W. Zhang, S. W. Fan, B. Assouar, and Y. S. Wang, Tunable multifunctional fish-bone elastic metasurface for the wavefront manipulation of the transmitted in-plane waves, J. Appl. Phys. 128, 224502 (2020).
    [44] J. Zhang, X. Su, Y. Liu, Y. Zhao, Y. Jing, and N. Hu, Metasurface constituted by thin composite beams to steer flexural waves in thin plates, Int. J. Solids Struct. 162, 14 (2019).
    [45] X. Su, Z. Lu, and A. N. Norris, Elastic metasurfaces for splitting SV- and P-waves in elastic solids, J. Appl. Phys. 123, 091701 (2018).
    [46] Y. Liu, H. Li, J. Zhang, X. Liu, L. Wu, H. Ning, and N. Hu, Design of elastic metasurfaces for controlling shear vertical waves using uniaxial scaling transformation method, Int. J. Mech. Sci. 169, 105335 (2020).
    [47] H. Zhu, S. Patnaik, T. F. Walsh, B. H. Jared, and F. Semperlotti, Nonlocal elastic metasurfaces: Enabling broadband wave control via intentional nonlocality, Proc. Natl. Acad. Sci. USA 117, 26099 33020274(2020).
    [48] S. Zhai, H. Chen, C. Ding, F. Shen, C. Luo, and X. Zhao, Manipulation of transmitted wave front using ultrathin planar acoustic metasurfaces, Appl. Phys. A 120, 1283 (2015).
    [49] B. H. Song, and J. S. Bolton, A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials, J. Acoust. Soc. Am. 107, 1131 10738770(2000).
    [50] X. Su, and A. N. Norris, Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps, J. Acoust. Soc. Am. 139, 3386 27369165(2016).
    [51] X. S. Li, Y. F. Wang, A. L. Chen, and Y. S. Wang, An arbitrarily curved acoustic metasurface for three-dimensional reflected wave-front modulation, J. Phys. D-Appl. Phys. 53, 195301 (2020).
    [52] A. Díaz-Rubio, and S. A. Tretyakov, Acoustic metasurfaces for scattering-free anomalous reflection and refraction, Phys. Rev. B 96, 125409 (2017).
    [53] Z. Zhou, S. Huang, D. Li, J. Zhu, and Y. Li, Broadband impedance modulation via non-local acoustic metamaterials, Natl. Sci. Rev. https://doi.org/10.1093/nsr/nwab171 (2021).
    [54] Y. Ra’di, D. L. Sounas, and A. Alù, Metagratings: Beyond the limits of graded metasurfaces for wave front control, Phys. Rev. Lett. 119, 067404 28949646(2017).
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  87
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 录用日期:  2021-12-02
  • 网络出版日期:  2022-08-01
  • 发布日期:  2022-02-07
  • 刊出日期:  2022-03-01

目录

    /

    返回文章
    返回