留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topology optimization of magnetorheological smart materials included PnCs for tunable wide bandgap design

Liang Kuan He Jingjie Jia Zhiyuan Zhang Xiaopeng

梁宽, 何经杰, 贾智源, 张晓鹏. 可谐调磁流变声子晶体拓扑优化设计[J]. 机械工程学报, 2022, 38(3): 421525. doi: 10.1007/s10409-021-09076-5
引用本文: 梁宽, 何经杰, 贾智源, 张晓鹏. 可谐调磁流变声子晶体拓扑优化设计[J]. 机械工程学报, 2022, 38(3): 421525. doi: 10.1007/s10409-021-09076-5
K. Liang, J. He, Z. Jia, and X. Zhang,Topology optimization of magnetorheological smart materials included PnCs for tunable wide bandgap design. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09076-5'>https://doi.org/10.1007/s10409-021-09076-5
Citation: K. Liang, J. He, Z. Jia, and X. Zhang,Topology optimization of magnetorheological smart materials included PnCs for tunable wide bandgap design. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09076-5">https://doi.org/10.1007/s10409-021-09076-5

Topology optimization of magnetorheological smart materials included PnCs for tunable wide bandgap design

doi: 10.1007/s10409-021-09076-5
Funds: 

the National Natural Science Foundation of China Grant

More Information
  • 摘要: 由于可谐调声子晶体具有有效操纵声波和弹性波的能力, 因此其设计和应用受到越来越多的关注. 本文研究了由磁流变材料构成的声子晶体的拓扑优化设计, 以打开声子晶体可调谐的宽禁带. 其中, 声子晶体的带隙可谐调性是通过磁流变材料在不断改变的外加磁场下剪切模量的变化来实现的. 代表声子晶体内双材料分布的伪单元密度被视为设计变量, 并采用人工磁流变惩罚模型进行插值, 提出了一种包络磁流变智能声子晶体带隙宽度和带隙可调范围极值的凝聚函数作为目标函数. 在此背景下, 对目标函数的灵敏度进行了分析, 并用基于梯度的数学规划方法解决了优化问题. 数值算例表明了该优化方法的有效性, 优化结果在不同磁场下具有可谐调、稳定的宽带隙特性. 本文还探讨了基于可谐调优化声子晶体的器件, 该器件可以提供更宽的可谐调带隙范围.

     

  • 1.  a The schematic design of PnCs, the triangle in the unit cell represents the irreducible Brillouin zone; b dependence of storage modulus of MR on applied magnetic field; c dispersion curves of PnCs under weak magnetic field (B = 100 G); d dispersion curves of PnCs under strong magnetic field (B = 800 G).

    2.  Initial design and its dispersion curves: a initial design of PnC with nine unit cells; b dispersion curves under weak magnetic field (B = 100 G); c dispersion curve under strong magnetic field (B = 800 G).

    3.  Optimized designs obtained under single magnetic field intensity and corresponding dispersion curves: a optimized design obtained under weak magnetic field (B = 100 G); b dispersion curve for the optimized design in a at B = 100 G; c dispersion curve for the optimized design in a at B = 800 G; d optimized design obtained under strong magnetic field (B = 800 G); e dispersion curve for the optimized design in d at B = 100 G; f dispersion curve for the optimized design in d at B = 800 G.

    4.  Optimized results of PnCs considering various magnetic fields: a optimized design; b iteration histories; c dispersion curves at B = 100 G; d dispersion curves at B = 800 G; e tunability of bandgap with various magnetic fields.

    5.  Optimized results of PnCs considering different weight coefficients: a w=0.1, b w=0.5, and c w=5.

    6.  Model for transmission analysis in COMSOL Multiphysics.

    7.  The transmission spectrum of waves propagating along Γ-X direction for the PnC shown in Fig. 4a: a B = 100 G; b B = 400 G; c B = 800 G.

    8.  The elastic wave amplitude fields of the optimized design in Fig. 4a under different magnetic fields: a B = 100 G; b B = 400 G; c B = 800 G.

    9.  Tunable optimized design for opening second bandgap under different magnetic fields: a optimized design; b dispersion curves at B = 100 G; c tunability of bandgap with various magnetic fields.

    10.  Tunable optimized design for opening third bandgap under different magnetic fields: a optimized design; b dispersion curves at B = 100 G; c tunability of bandgap with various magnetic fields.

    11.  Tunable optimized design for opening fifth bandgap under different magnetic fields: a optimized design; b dispersion curves at B = 100 G; c tunability of bandgap with various magnetic fields.

    12.  The MR-included PnCs based device consisting of optimized designs.

    13.  Transmission curves of MR-included PnCs based device under different magnetic fields: a B = 100 G; b B = 400 G; c B = 800 G.

    14.  Amplitude field of MR-included PnCs based device under the magnetic field B = 800 G at different frequencies.

    Table 1.   Bandgaps of optimization results under different magnetic fields

    Magnetic fieldintensity (G)Bandgap of weakmagnetic field (kHz)Bandgap of strongmagnetic field (kHz)
    1000.3470.279
    2000.3780.362
    3000.4080.437
    4000.4290.494
    5000.4430.530
    6000.4520.553
    7000.4560.563
    8000.4560.564
    下载: 导出CSV

    Table 2.   Bandgaps of optimization results under various magnetic fields

    Weight factorBandgap range (kHz)Weak magnetic field (kHz)Strong magnetic field (kHz)
    1st band2nd bandbandgap1st band2nd bandbandgap
    0.10.9051.1211.4600.3391.5692.0260.457
    0.50.9121.1271.4580.3311.5652.0390.474
    1.00.9181.1321.4620.3301.5742.0500.476
    5.00.9421.1371.4850.3481.5982.0790.481
    下载: 导出CSV
  • [1] S. Babaee, N. Viard, P. Wang, N. X. Fang, and K. Bertoldi, Harnessing deformation to switch on and off the propagation of sound, Adv. Mater. 28, 1631 26663556(2016).
    [2] K. Bertoldi, and M. C. Boyce, Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures, Phys. Rev. B 77, 052105 (2008).
    [3] Z. Ren, L. Ji, R. Tao, M. Chen, Z. Wan, Z. Zhao, and D. Fang, SMP-based multi-stable mechanical metamaterials: From bandgap tuning to wave logic gates, Extreme Mech. Lett. 42, 101077 (2021).
    [4] R. Feng, and K. Liu, Tuning the band-gap of phononic crystals with an initial stress, Phys. B-Condensed Matter 407, 2032 (2012).
    [5] S. Ning, D. Chu, F. Yang, H. Jiang, Z. Liu, and Z. Zhuang, Characteristics of band gap and low-frequency wave propagation of mechanically tunable phononic crystals with scatterers in periodic porous elastomeric matrices, J. Appl. Mech. 88, 051001 (2021).
    [6] S. Zhang, Y. Shi, and Y. Gao, Tunability of band structures in a two-dimensional magnetostrictive phononic crystal plate with stress and magnetic loadings, Phys. Lett. A 381, 1055 (2017).
    [7] F. Allein, V. Tournat, V. E. Gusev, and G. Theocharis, Tunable magneto-granular phononic crystals, Appl. Phys. Lett. 108, 161903 (2016).
    [8] M. Ouisse, M. Collet, and F. Scarpa, A piezo-shunted kirigami auxetic lattice for adaptive elastic wave filtering, Smart Mater. Struct. 25, 115016 (2016).
    [9] Y. Song, and Y. Shen, A tunable phononic crystal system for elastic ultrasonic wave control, Appl. Phys. Lett. 118, 224104 (2021).
    [10] C. Nimmagadda, and K. H. Matlack, Thermally tunable band gaps in architected metamaterial structures, J. Sound Vib. 439, 29 (2019).
    [11] Z. Bian, W. Peng, and J. Song, Thermal tuning of band structures in a one-dimensional phononic crystal, J. Appl. Mech. 81, 041008 (2014).
    [12] O. Bou Matar, J. F. Robillard, J. O. Vasseur, A. C. Hladky-Hennion, P. A. Deymier, P. Pernod, and V. Preobrazhensky, Band gap tunability of magneto-elastic phononic crystal, J. Appl. Phys. 111, 054901 (2012).
    [13] Y. L. Wei, Q. S. Yang, and R. Tao, SMP-based chiral auxetic mechanical metamaterial with tunable bandgap function, Int. J. Mech. Sci. 195, 106267 (2021).
    [14] J. Zhu, H. Chen, B. Wu, W. Chen, and O. Balogun, Tunable band gaps and transmission behavior of SH waves with oblique incident angle in periodic dielectric elastomer laminates, Int. J. Mech. Sci. 146-147, 81 (2018).
    [15] W. P. Yang, and L. W. Chen, The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator, Smart Mater. Struct. 17, 015011 (2008).
    [16] G. Shmuel, Electrostatically tunable band gaps in finitely extensible dielectric elastomer fiber composites, Int. J. Solids Struct. 50, 680 (2013).
    [17] X. Zhou, and C. Chen, Tuning the locally resonant phononic band structures of two-dimensional periodic electroactive composites, Phys. B-Condensed Matter 431, 23 (2013).
    [18] J. Y. Yeh, Control analysis of the tunable phononic crystal with electrorheological material, Phys. B-Condensed Matter 400, 137 (2007).
    [19] L. W. Cai, D. K. Dacol, G. J. Orris, D. C. Calvo, and M. Nicholas, Acoustical scattering by multilayer spherical elastic scatterer containing electrorheological layer, J. Acoust. Soc. Am. 129, 12 21302983(2011).
    [20] A. Bayat, and F. Gordaninejad, Band-gap of a soft magnetorheological phononic crystal, J. Vib. Acoust. 137, 011011 (2015).
    [21] G. Zhang, and Y. Gao, Tunability of band gaps in two-dimensional phononic crystals with magnetorheological and electrorheological composites, Acta Mech. Solid Sin. 34, 40 (2021).
    [22] Y. Huang, C. L. Zhang, and W. Q. Chen, Tuning band structures of two-dimensional phononic crystals with biasing fields, J. Appl. Mech. 81, 091008 (2014).
    [23] N. Karami Mohammadi, P. I. Galich, A. O. Krushynska, and S. Rudykh, Soft magnetoactive laminates: large deformations, transverse elastic waves and band gaps tunability by a magnetic field, J. Appl. Mech. 86, 111001 (2019).
    [24] O. Sigmund, and K. Maute, Topology optimization approaches, Struct. Multidiscip. Optim. 48, 1031 (2013).
    [25] X. Huang, and Y. M. Xie, A further review of ESO type methods for topology optimization, Struct. Multidiscip. Optim. 41, 671 (2010).
    [26] G. Yi, and B. D. Youn, A comprehensive survey on topology optimization of phononic crystals, Struct. Multidiscip. Optim. 54, 1315 (2016).
    [27] W. Li, F. Meng, Y. Chen, Y. Li, and X. Huang, Topology optimization of photonic and phononic crystals and metamaterials: A review, Adv. Theor. Simul. 2, 1900017 (2019).
    [28] O. Sigmund, and J. S. Jensen, Systematic design of phononic band-gap materials and structures by topology optimization, Philos. Trans. R. Soc. London. Ser. A-Math. Phys. Eng. Sci. 361, 1001 12804226(2003).
    [29] X. Zhang, J. Xing, P. Liu, Y. Luo, and Z. Kang, Realization of full and directional band gap design by non-gradient topology optimization in acoustic metamaterials, Extreme Mech. Lett. 42, 101126 (2021).
    [30] Y. Chen, F. Meng, G. Sun, G. Li, and X. Huang, Topological design of phononic crystals for unidirectional acoustic transmission, J. Sound Vib. 410, 103 (2017).
    [31] J. He, and Z. Kang, Achieving directional propagation of elastic waves via topology optimization, Ultrasonics 82, 1 28732310(2018).
    [32] J. H. Park, P. S. Ma, and Y. Y. Kim, Design of phononic crystals for self-collimation of elastic waves using topology optimization method, Struct. Multidiscip. Optim. 51, 1199 (2015).
    [33] C. J. Rupp, A. Evgrafov, K. Maute, and M. L. Dunn, Design of phononic materials/structures for surface wave devices using topology optimization, Struct. Multidiscip. Optim. 34, 111 (2007).
    [34] H. W. Dong, S. D. Zhao, P. Wei, L. Cheng, Y. S. Wang, and C. Zhang, Systematic design and realization of double-negative acoustic metamaterials by topology optimization, Acta Mater. 172, 102 (2019).
    [35] R. E. Christiansen, F. Wang, and O. Sigmund, Topological insulators by topology optimization, Phys. Rev. Lett. 122, 234502 31298901(2019).
    [36] Y. Chen, F. Meng, and X. Huang, Creating acoustic topological insulators through topology optimization, Mech. Syst. Signal Process. 146, 107054 (2021).
    [37] Y. Luo, and J. Bao, A material-field series-expansion method for topology optimization of continuum structures, Comput. Struct. 225, 106122 (2019).
    [38] Y. Chen, X. Huang, G. Sun, X. Yan, and G. Li, Maximizing spatial decay of evanescent waves in phononic crystals by topology optimization, Comput. Struct. 182, 430 (2017).
    [39] A. Evgrafov, C. J. Rupp, M. L. Dunn, and K. Maute, Optimal synthesis of tunable elastic wave-guides, Comput. Methods Appl. Mech. Eng. 198, 292 (2008).
    [40] A. Shakeri, S. Darbari, and M. K. Moravvej-Farshi, Designing a tunable acoustic resonator based on defect modes, stimulated by selectively biased PZT rods in a 2D phononic crystal, Ultrasonics 92, 8 30216782(2019).
    [41] X. Zhang, H. Ye, N. Wei, R. Tao, and Z. Luo, Design optimization of multifunctional metamaterials with tunable thermal expansion and phononic bandgap, Mater. Des. 209, 109990 (2021).
    [42] S. L. Vatanabe, G. H. Paulino, and E. C. N. Silva, Maximizing phononic band gaps in piezocomposite materials by means of topology optimization, J. Acoust. Soc. Am. 136, 494 25096084(2014).
    [43] S. Hedayatrasa, K. Abhary, M. S. Uddin, and J. K. Guest, Optimal design of tunable phononic bandgap plates under equibiaxial stretch, Smart Mater. Struct. 25, 055025 (2016).
    [44] E. Bortot, O. Amir, and G. Shmuel, Topology optimization of dielectric elastomers for wide tunable band gaps, Int. J. Solids Struct. 143, 262 (2018).
    [45] G. Kreisselmeier, and R. Steinhauser, Systematic control design by optimizing a vector performance index, IFAC Proc. Volumes 12, 113 (1979).
    [46] X. Zhang, and Z. Kang, Topology optimization of magnetorheological fluid layers in sandwich plates for semi-active vibration control, Smart Mater. Struct. 24, 085024 (2015).
    [47] V. Rajamohan, R. Sedaghati, and S. Rakheja, Optimum design of a multilayer beam partially treated with magnetorheological fluid, Smart Mater. Struct. 19, 065002 (2010).
    [48] M. Stolpe, and K. Svanberg, An alternative interpolation scheme for minimum compliance topology optimization, Struct. Multidiscip. Optim. 22, 116 (2001).
    [49] S. Xu, Y. Cai, and G. Cheng, Volume preserving nonlinear density filter based on heaviside functions, Struct. Multidiscip. Optim. 41, 495 (2010).
    [50] X. Zhang, J. He, A. Takezawa, and Z. Kang, Robust topology optimization of phononic crystals with random field uncertainty, Int. J. Numer. Methods Eng. 115, 1154 (2018).
    [51] K. Wang, Y. Liu, and B. Wang, Ultrawide band gap design of phononic crystals based on topological optimization, Phys. B-Condens. Matter 571, 263 (2019).
    [52] B. Wu, R. Wei, and C. He, in Research on two-dimensional phononic crystal with magnetorheological material: Proceedings of IEEE international ultrasonics symposium, Beijing, 2008, pp. 1484-1486
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  58
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 录用日期:  2021-12-11
  • 网络出版日期:  2022-08-01
  • 发布日期:  2022-02-21
  • 刊出日期:  2022-03-01

目录

    /

    返回文章
    返回