Topology optimization of magnetorheological smart materials included PnCs for tunable wide bandgap design
doi: 10.1007/s10409-021-09076-5
-
摘要: 由于可谐调声子晶体具有有效操纵声波和弹性波的能力, 因此其设计和应用受到越来越多的关注. 本文研究了由磁流变材料构成的声子晶体的拓扑优化设计, 以打开声子晶体可调谐的宽禁带. 其中, 声子晶体的带隙可谐调性是通过磁流变材料在不断改变的外加磁场下剪切模量的变化来实现的. 代表声子晶体内双材料分布的伪单元密度被视为设计变量, 并采用人工磁流变惩罚模型进行插值, 提出了一种包络磁流变智能声子晶体带隙宽度和带隙可调范围极值的凝聚函数作为目标函数. 在此背景下, 对目标函数的灵敏度进行了分析, 并用基于梯度的数学规划方法解决了优化问题. 数值算例表明了该优化方法的有效性, 优化结果在不同磁场下具有可谐调、稳定的宽带隙特性. 本文还探讨了基于可谐调优化声子晶体的器件, 该器件可以提供更宽的可谐调带隙范围.Abstract: Design and application of tunable phononic crystals (PnCs) are attracting increasing interest due to their promising capabilities to manipulate acoustic and elastic waves effectively. This paper investigates topology optimization of the magnetorheological (MR) materials including PnCs for opening the tunable and wide bandgaps. Therein, the bandgap tunability of the PnCs is achieved by shear modulus variation of MR materials under a continuously changing applied magnetic field. The pseudo elemental densities representing the bi-material distribution inside the PnC unit cell are taken as design variables and interpolated with an artificial MR penalization model. An aggregated bandgap index for enveloping the extreme values of bandgap width and tunable range of the MR included smart PnCs is proposed as the objective function. In this context, the sensitivity analysis scheme is derived, and the optimization problem is solved with the gradient-based mathematical programming method. The effectiveness of the proposed optimization method is demonstrated by numerical examples, where the optimized solutions present tunable and stably wide bandgap characteristics under different magnetic fields. The tunable optimized PnCs based device that can provide a wider tunable bandgap range is also explored.
-
Key words:
- Topology optimization /
- Tunable bandgap /
- Phononic crystals /
- Magnetorheological material
-
1. a The schematic design of PnCs, the triangle in the unit cell represents the irreducible Brillouin zone; b dependence of storage modulus of MR on applied magnetic field; c dispersion curves of PnCs under weak magnetic field (B = 100 G); d dispersion curves of PnCs under strong magnetic field (B =
800 G). 3. Optimized designs obtained under single magnetic field intensity and corresponding dispersion curves: a optimized design obtained under weak magnetic field (B = 100 G); b dispersion curve for the optimized design in a at B = 100 G; c dispersion curve for the optimized design in a at B = 800 G; d optimized design obtained under strong magnetic field (B = 800 G); e dispersion curve for the optimized design in d at B = 100 G; f dispersion curve for the optimized design in d at B = 800 G.
7. The transmission spectrum of waves propagating along
direction for the PnC shown in Fig. 4a: a B = 100 G; b B = 400 G; c B = 800 G. 8. The elastic wave amplitude fields of the optimized design in Fig. 4a under different magnetic fields: a B = 100 G; b B = 400 G; c B = 800 G.
Table 1. Bandgaps of optimization results under different magnetic fields
Magnetic fieldintensity (G) Bandgap of weakmagnetic field (kHz) Bandgap of strongmagnetic field (kHz) 100 0.347 0.279 200 0.378 0.362 300 0.408 0.437 400 0.429 0.494 500 0.443 0.530 600 0.452 0.553 700 0.456 0.563 800 0.456 0.564 Table 2. Bandgaps of optimization results under various magnetic fields
Weight factor Bandgap range (kHz) Weak magnetic field (kHz) Strong magnetic field (kHz) 1st band 2nd band bandgap 1st band 2nd band bandgap 0.1 0.905 1.121 1.460 0.339 1.569 2.026 0.457 0.5 0.912 1.127 1.458 0.331 1.565 2.039 0.474 1.0 0.918 1.132 1.462 0.330 1.574 2.050 0.476 5.0 0.942 1.137 1.485 0.348 1.598 2.079 0.481 -
[1] S. Babaee, N. Viard, P. Wang, N. X. Fang, and K. Bertoldi, Harnessing deformation to switch on and off the propagation of sound, Adv. Mater. 28, 1631 26663556(2016). [2] K. Bertoldi, and M. C. Boyce, Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures, Phys. Rev. B 77, 052105 (2008). [3] Z. Ren, L. Ji, R. Tao, M. Chen, Z. Wan, Z. Zhao, and D. Fang, SMP-based multi-stable mechanical metamaterials: From bandgap tuning to wave logic gates, Extreme Mech. Lett. 42, 101077 (2021). [4] R. Feng, and K. Liu, Tuning the band-gap of phononic crystals with an initial stress, Phys. B-Condensed Matter 407, 2032 (2012). [5] S. Ning, D. Chu, F. Yang, H. Jiang, Z. Liu, and Z. Zhuang, Characteristics of band gap and low-frequency wave propagation of mechanically tunable phononic crystals with scatterers in periodic porous elastomeric matrices, J. Appl. Mech. 88, 051001 (2021). [6] S. Zhang, Y. Shi, and Y. Gao, Tunability of band structures in a two-dimensional magnetostrictive phononic crystal plate with stress and magnetic loadings, Phys. Lett. A 381, 1055 (2017). [7] F. Allein, V. Tournat, V. E. Gusev, and G. Theocharis, Tunable magneto-granular phononic crystals, Appl. Phys. Lett. 108, 161903 (2016). [8] M. Ouisse, M. Collet, and F. Scarpa, A piezo-shunted kirigami auxetic lattice for adaptive elastic wave filtering, Smart Mater. Struct. 25, 115016 (2016). [9] Y. Song, and Y. Shen, A tunable phononic crystal system for elastic ultrasonic wave control, Appl. Phys. Lett. 118, 224104 (2021). [10] C. Nimmagadda, and K. H. Matlack, Thermally tunable band gaps in architected metamaterial structures, J. Sound Vib. 439, 29 (2019). [11] Z. Bian, W. Peng, and J. Song, Thermal tuning of band structures in a one-dimensional phononic crystal, J. Appl. Mech. 81, 041008 (2014). [12] O. Bou Matar, J. F. Robillard, J. O. Vasseur, A. C. Hladky-Hennion, P. A. Deymier, P. Pernod, and V. Preobrazhensky, Band gap tunability of magneto-elastic phononic crystal, J. Appl. Phys. 111, 054901 (2012). [13] Y. L. Wei, Q. S. Yang, and R. Tao, SMP-based chiral auxetic mechanical metamaterial with tunable bandgap function, Int. J. Mech. Sci. 195, 106267 (2021). [14] J. Zhu, H. Chen, B. Wu, W. Chen, and O. Balogun, Tunable band gaps and transmission behavior of SH waves with oblique incident angle in periodic dielectric elastomer laminates, Int. J. Mech. Sci. 146-147, 81 (2018). [15] W. P. Yang, and L. W. Chen, The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator, Smart Mater. Struct. 17, 015011 (2008). [16] G. Shmuel, Electrostatically tunable band gaps in finitely extensible dielectric elastomer fiber composites, Int. J. Solids Struct. 50, 680 (2013). [17] X. Zhou, and C. Chen, Tuning the locally resonant phononic band structures of two-dimensional periodic electroactive composites, Phys. B-Condensed Matter 431, 23 (2013). [18] J. Y. Yeh, Control analysis of the tunable phononic crystal with electrorheological material, Phys. B-Condensed Matter 400, 137 (2007). [19] L. W. Cai, D. K. Dacol, G. J. Orris, D. C. Calvo, and M. Nicholas, Acoustical scattering by multilayer spherical elastic scatterer containing electrorheological layer, J. Acoust. Soc. Am. 129, 12 21302983(2011). [20] A. Bayat, and F. Gordaninejad, Band-gap of a soft magnetorheological phononic crystal, J. Vib. Acoust. 137, 011011 (2015). [21] G. Zhang, and Y. Gao, Tunability of band gaps in two-dimensional phononic crystals with magnetorheological and electrorheological composites, Acta Mech. Solid Sin. 34, 40 (2021). [22] Y. Huang, C. L. Zhang, and W. Q. Chen, Tuning band structures of two-dimensional phononic crystals with biasing fields, J. Appl. Mech. 81, 091008 (2014). [23] N. Karami Mohammadi, P. I. Galich, A. O. Krushynska, and S. Rudykh, Soft magnetoactive laminates: large deformations, transverse elastic waves and band gaps tunability by a magnetic field, J. Appl. Mech. 86, 111001 (2019). [24] O. Sigmund, and K. Maute, Topology optimization approaches, Struct. Multidiscip. Optim. 48, 1031 (2013). [25] X. Huang, and Y. M. Xie, A further review of ESO type methods for topology optimization, Struct. Multidiscip. Optim. 41, 671 (2010). [26] G. Yi, and B. D. Youn, A comprehensive survey on topology optimization of phononic crystals, Struct. Multidiscip. Optim. 54, 1315 (2016). [27] W. Li, F. Meng, Y. Chen, Y. Li, and X. Huang, Topology optimization of photonic and phononic crystals and metamaterials: A review, Adv. Theor. Simul. 2, 1900017 (2019). [28] O. Sigmund, and J. S. Jensen, Systematic design of phononic band-gap materials and structures by topology optimization, Philos. Trans. R. Soc. London. Ser. A-Math. Phys. Eng. Sci. 361, 1001 12804226(2003). [29] X. Zhang, J. Xing, P. Liu, Y. Luo, and Z. Kang, Realization of full and directional band gap design by non-gradient topology optimization in acoustic metamaterials, Extreme Mech. Lett. 42, 101126 (2021). [30] Y. Chen, F. Meng, G. Sun, G. Li, and X. Huang, Topological design of phononic crystals for unidirectional acoustic transmission, J. Sound Vib. 410, 103 (2017). [31] J. He, and Z. Kang, Achieving directional propagation of elastic waves via topology optimization, Ultrasonics 82, 1 28732310(2018). [32] J. H. Park, P. S. Ma, and Y. Y. Kim, Design of phononic crystals for self-collimation of elastic waves using topology optimization method, Struct. Multidiscip. Optim. 51, 1199 (2015). [33] C. J. Rupp, A. Evgrafov, K. Maute, and M. L. Dunn, Design of phononic materials/structures for surface wave devices using topology optimization, Struct. Multidiscip. Optim. 34, 111 (2007). [34] H. W. Dong, S. D. Zhao, P. Wei, L. Cheng, Y. S. Wang, and C. Zhang, Systematic design and realization of double-negative acoustic metamaterials by topology optimization, Acta Mater. 172, 102 (2019). [35] R. E. Christiansen, F. Wang, and O. Sigmund, Topological insulators by topology optimization, Phys. Rev. Lett. 122, 234502 31298901(2019). [36] Y. Chen, F. Meng, and X. Huang, Creating acoustic topological insulators through topology optimization, Mech. Syst. Signal Process. 146, 107054 (2021). [37] Y. Luo, and J. Bao, A material-field series-expansion method for topology optimization of continuum structures, Comput. Struct. 225, 106122 (2019). [38] Y. Chen, X. Huang, G. Sun, X. Yan, and G. Li, Maximizing spatial decay of evanescent waves in phononic crystals by topology optimization, Comput. Struct. 182, 430 (2017). [39] A. Evgrafov, C. J. Rupp, M. L. Dunn, and K. Maute, Optimal synthesis of tunable elastic wave-guides, Comput. Methods Appl. Mech. Eng. 198, 292 (2008). [40] A. Shakeri, S. Darbari, and M. K. Moravvej-Farshi, Designing a tunable acoustic resonator based on defect modes, stimulated by selectively biased PZT rods in a 2D phononic crystal, Ultrasonics 92, 8 30216782(2019). [41] X. Zhang, H. Ye, N. Wei, R. Tao, and Z. Luo, Design optimization of multifunctional metamaterials with tunable thermal expansion and phononic bandgap, Mater. Des. 209, 109990 (2021). [42] S. L. Vatanabe, G. H. Paulino, and E. C. N. Silva, Maximizing phononic band gaps in piezocomposite materials by means of topology optimization, J. Acoust. Soc. Am. 136, 494 25096084(2014). [43] S. Hedayatrasa, K. Abhary, M. S. Uddin, and J. K. Guest, Optimal design of tunable phononic bandgap plates under equibiaxial stretch, Smart Mater. Struct. 25, 055025 (2016). [44] E. Bortot, O. Amir, and G. Shmuel, Topology optimization of dielectric elastomers for wide tunable band gaps, Int. J. Solids Struct. 143, 262 (2018). [45] G. Kreisselmeier, and R. Steinhauser, Systematic control design by optimizing a vector performance index, IFAC Proc. Volumes 12, 113 (1979). [46] X. Zhang, and Z. Kang, Topology optimization of magnetorheological fluid layers in sandwich plates for semi-active vibration control, Smart Mater. Struct. 24, 085024 (2015). [47] V. Rajamohan, R. Sedaghati, and S. Rakheja, Optimum design of a multilayer beam partially treated with magnetorheological fluid, Smart Mater. Struct. 19, 065002 (2010). [48] M. Stolpe, and K. Svanberg, An alternative interpolation scheme for minimum compliance topology optimization, Struct. Multidiscip. Optim. 22, 116 (2001). [49] S. Xu, Y. Cai, and G. Cheng, Volume preserving nonlinear density filter based on heaviside functions, Struct. Multidiscip. Optim. 41, 495 (2010). [50] X. Zhang, J. He, A. Takezawa, and Z. Kang, Robust topology optimization of phononic crystals with random field uncertainty, Int. J. Numer. Methods Eng. 115, 1154 (2018). [51] K. Wang, Y. Liu, and B. Wang, Ultrawide band gap design of phononic crystals based on topological optimization, Phys. B-Condens. Matter 571, 263 (2019). [52] B. Wu, R. Wei, and C. He, in Research on two-dimensional phononic crystal with magnetorheological material: Proceedings of IEEE international ultrasonics symposium, Beijing, 2008, pp. 1484-1486