留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Probing the constitutive behavior of microcrystals by analyzing the dynamics of the micromechanical testing system

Wang Peng Liu Zhanli Xie Degang Qu Shaoxing Zhuang Zhuo Zhang Danli

王鹏, 柳占立, 谢德刚, 曲绍兴, 庄茁, 张丹利. 基于微观力学测试系统动力学分析的探索微晶的本构行为探究[J]. 机械工程学报, 2022, 38(3): 121300. doi: 10.1007/s10409-021-09077-5
引用本文: 王鹏, 柳占立, 谢德刚, 曲绍兴, 庄茁, 张丹利. 基于微观力学测试系统动力学分析的探索微晶的本构行为探究[J]. 机械工程学报, 2022, 38(3): 121300. doi: 10.1007/s10409-021-09077-5
P. Wang, Z. Liu, D. Xie, S. Qu, Z. Zhuang, and D. Zhang,Probing the constitutive behavior of microcrystals by analyzing the dynamics of the micromechanical testing system. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09077-5'>https://doi.org/10.1007/s10409-021-09077-5
Citation: P. Wang, Z. Liu, D. Xie, S. Qu, Z. Zhuang, and D. Zhang,Probing the constitutive behavior of microcrystals by analyzing the dynamics of the micromechanical testing system. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09077-5">https://doi.org/10.1007/s10409-021-09077-5

Probing the constitutive behavior of microcrystals by analyzing the dynamics of the micromechanical testing system

doi: 10.1007/s10409-021-09077-5
Funds: 

the National Natural Science Foundation of China Grant

the Fundamental Research Funds for the Central Universities Grant

and the China Postdoctoral Science Foundation Grant

  • 摘要: 由于塑性失稳导致的应力-应变测量曲线中塑性变形信息的缺失, 使得微晶本构行为仍然很神秘. 此外, 应力-应变测量曲线在不同控制模式下的测量结果变化很大, 而本构行为不应受测量方法的影响. 此外, 由于微观力学测试系统的非线性动力学行为尚不清楚, 微晶真实本构行为的探究一直是一个挑战. 本文在位移控制和负载控制下对单晶铝微柱进行了详细的实验和分析. 为了解释实验结果, 文章基于微观力学测试原理开发了一个聚合参数物理模型, 该模型可直接将微观力学测试系统的非线性动力学与微晶的本构行为联系起来. 这表明应力-应变测量曲线的某些阶段由控制算法产生, 与本构行为无关. 通过求解微观力学测试系统的非线性动力学, 从平衡态开始的强塑性不稳定性(大应变爆发)归因于微晶的应变软化阶段. 文章还进行参数研究以减少塑性失稳对测量响应的影响. 本研究为开发各种本构模型和设计可靠的微观力学试验提供了重要的见解.

     

  • 1.  Scanning electron microscopy (SEM) images of the micron-sized sample used for compression tests under a displacement control and b load control.

    2.  Some stages of the measured mechanical response under displacement control are not related to constitutive behavior. a The experimental stress-strain curve was obtained under displacement control. Red markers are the data points sampled by the displacement and force sensor. b Representative stress-strain curve under displacement control. A few or no data points are sampled during the forward surge stage. c Analysis of the evolution of displacement and load in the time domain. Load drop is mainly attributed to the control algorithm.

    3.  The experimental stress-strain curve was obtained under displacement control. Red cross markers are the data points sampled by the displacement and force sensor, and no data point is sampled during the forward surge stage (Movie S1).

    4.  The experimental stress-strain curve was obtained under displacement control. Multiple strain bursts with varying degrees of instability occur during deformation. Red cross markers are the data points sampled by the displacement and force sensor, and a few or no data points are sampled during the forward surge stage. The measured stress drops to a specific value (Movie S2).

    5.  The experimental stress-strain curve was obtained under displacement control. Red cross markers are the data points sampled by the displacement and force sensor, and a few data points are sampled during the forward surge stage. The measured stress drops to zero (Movie S3).

    6.  Connection and difference of the measured mechanical responses between displacement control and load control. a The experimental stress-strain curve was obtained under load control. b Representative stress-strain curve under load control. c Analysis of the evolution of displacement and load in the time domain. The controller does not respond to the displacement jump since it controls the load.

    7.  A lumped-parameter physical model based on the principle of the micromechanical testing system. a Schematic diagram of the principle of the micromechanical testing system. b A simplified lumped-parameter mechanical model with the loading system and micropillar connected in series. c Force equilibrium analysis of the loading system and micropillar.

    8.  Nonlinear dynamical behaviors of the micromechanical testing system. The dimensionless displacement, velocity, and force equilibrium of the micropillar vary as a function of time. The dimensionless displacement and velocity of the loading system also change with time.

    9.  Dynamical characteristic of the experimental setup. a Dimensionless displacement of the indenter and micropillar as a function of time when m=1.5. b Dimensionless velocity of indenter and micropillar. c Dimensionless displacement of the indenter and micropillar as a function of time when m=150. d Dimensionless velocity of indenter and micropillar.

    10.  The stress-strain curves are described by the constitutive function equation. The influence of the parameter m on the degree of strain softening is illustrated. E and ε0 is set as 61.9 GPa and 0.1, respectively. During the strain-softening stage, the absolute value of the slope under the condition m=150 is much larger than that under the condition m=1.5.

    11.  Numerical solutions of the governing equations of the experimental setup: dimensionless velocity of indenter and micropillar as a function of time when a Ml/Mp=50; b Ml/Mp=100; c Ml/Mp=200; d Ml/Mp=400.

    12.  The dimensionless velocity of the micropillar changes with time, and the burst velocity increases as the mass ratio of the loading system to micropillar (Ml/Mp) increases.

    13.  Numerical solutions of the governing equations of the experimental setup: dimensionless velocity of indenter and micropillar as a function of time when a Kp/Kl=0.2; b Kp/Kl=0.4; c Kp/Kl=0.6; d Kp/Kl=0.8.

    14.  The dimensionless velocity of the micropillar changes with time, and the burst velocity increases as the stiffness ratio of the micropillar to the loading system (Kp/Kl) increases.

  • [1] F. F. Csikor, C. Motz, D. Weygand, M. Zaiser, and S. Zapperi, Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale, Science 318, 251 17932293(2007).
    [2] K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches, Phys. Rev. Lett. 102, 175501 19518791(2009).
    [3] Y. Cui, G. Po, and N. Ghoniem, Controlling strain bursts and avalanches at the nano- to micrometer scale, Phys. Rev. Lett. 117, 155502 27768336(2016).
    [4] X. Ni, S. Papanikolaou, G. Vajente, R. X. Adhikari, and J. R. Greer, Probing microplasticity in small-scale FCC crystals via dynamic mechanical analysis, Phys. Rev. Lett. 118, 155501 28452540(2017).
    [5] P. Wang, F. Liu, Y. Cui, Z. Liu, S. Qu, and Z. Zhuang, Interpreting strain burst in micropillar compression through instability of loading system, Int. J. Plast. 107, 150 (2018).
    [6] X. Ni, H. Zhang, D. B. Liarte, L. W. McFaul, K. A. Dahmen, J. P. Sethna, and J. R. Greer, Yield precursor dislocation avalanches in small crystals: The irreversibility transition, Phys. Rev. Lett. 123, 035501 31386460(2019).
    [7] P. Hua, K. Chu, and Q. Sun, Grain refinement and amorphization in nanocrystalline NiTi micropillars under uniaxial compression, Scripta Mater. 154, 123 (2018).
    [8] Y. Hu, L. Shu, Q. Yang, W. Guo, P. K. Liaw, K. A. Dahmen, and J. M. Zuo, Dislocation avalanche mechanism in slowly compressed high entropy alloy nanopillars, Commun. Phys. 1, 61 (2018).
    [9] Z. W. Shan, J. Li, Y. Q. Cheng, A. M. Minor, S. A. Syed Asif, O. L. Warren, and E. Ma, Plastic flow and failure resistance of metallic glass: Insight from in situ, Phys. Rev. B 77, 155419 (2008).
    [10] P. Wang, T. Yin, and S. Qu, On the grain size dependent working hardening behaviors of severe plastic deformation processed metals, Scripta Mater. 178, 171 (2020).
    [11] P. Wang, Y. Xiang, X. Wang, Z. Liu, S. Qu, and Z. Zhuang, New insight for mechanical properties of metals processed by severe plastic deformation, Int. J. Plast. 123, 22 (2019).
    [12] R. Maaβ, M. Wraith, J. T. Uhl, J. R. Greer, and K. A. Dahmen, Slip statistics of dislocation avalanches under different loading modes, Phys. Rev. E 91, 042403 25974504(2015).
    [13] Z. J. Wang, Q. J. Li, Z. W. Shan, J. Li, J. Sun, and E. Ma, Sample size effects on the large strain bursts in submicron aluminum pillars, Appl. Phys. Lett. 100, 071906 (2012).
    [14] A. T. Jennings, J. Li, and J. R. Greer, Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation, Acta Mater. 59, 5627 (2011).
    [15] Y. Gao, and H. Bei, Strength statistics of single crystals and metallic glasses under small stressed volumes, Prog. Mater. Sci. 82, 118 (2016).
    [16] H. Tang, K. W. Schwarz, and H. D. Espinosa, Dislocation-source shutdown and the plastic behavior of single-crystal micropillars, Phys. Rev. Lett. 100, 185503 18518390(2008).
    [17] P. Lin, Z. Liu, Y. Cui, and Z. Zhuang, A stochastic crystal plasticity model with size-dependent and intermittent strain bursts characteristics at micron scale, Int. J. Solids Struct. 69-70, 267 (2015).
    [18] T. Crosby, G. Po, C. Erel, and N. Ghoniem, The origin of strain avalanches in sub-micron plasticity of fcc metals, Acta Mater. 89, 123 (2015).
    [19] Y. Cui, G. Po, and N. Ghoniem, Influence of loading control on strain bursts and dislocation avalanches at the nanometer and micrometer scale, Phys. Rev. B 95, 064103 (2017).
    [20] A. Sedlmayr, E. Bitzek, D. S. Gianola, G. Richter, R. Mönig, and O. Kraft, Existence of two twinning-mediated plastic deformation modes in Au nanowhiskers, Acta Mater. 60, 3985 (2012).
    [21] X. Zhang, X. Zhang, F. Shang, and Q. Li, Second-order work and strain burst in single-crystalline micropillar plasticity, Int. J. Plast. 77, 192 (2016).
    [22] K. S. Ng, and A. H. W. Ngan, Stochastic nature of plasticity of aluminum micro-pillars, Acta Mater. 56, 1712 (2008).
    [23] D. M. Dimiduk, C. Woodward, R. Lesar, and M. D. Uchic, Scale-free intermittent flow in crystal plasticity, Science 312, 1188 16728635(2006).
    [24] D. M. Dimiduk, M. D. Uchic, and T. A. Parthasarathy, Size-affected single-slip behavior of pure nickel microcrystals, Acta Mater. 53, 4065 (2005).
    [25] M. D. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. Nix, Sample dimensions influence strength and crystal plasticity, Science 305, 986 15310897(2004).
    [26] M. D. Uchic, and D. M. Dimiduk, A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing, Mater. Sci. Eng.-A 400-401, 268 (2005).
    [27] W. M. Mook, C. Niederberger, M. Bechelany, L. Philippe, and J. Michler, Compression of freestanding gold nanostructures: From stochastic yield to predictable flow, Nanotechnology 21, 055701 20023305(2010).
    [28] D. G. Xie, R. R. Zhang, Z. Y. Nie, J. Li, E. Ma, J. Li, and Z. W. Shan, Deformation mechanism maps for sub-micron sized aluminum, Acta Mater. 188, 570 (2020).
    [29] S. S. Brenner, Plastic deformation of copper and silver whiskers, J. Appl. Phys. 28, 1023 (1957).
    [30] S. S. Brenner, Tensile strength of whiskers, J. Appl. Phys. 27, 1484 (1956).
    [31] L. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, and V. V. Bulatov, Probing the limits of metal plasticity with molecular dynamics simulations, Nature 550, 492 28953878(2017).
    [32] D. Krajcinovic, and M. A. G. Silva, Statistical aspects of the continuous damage theory, Int. J. Solids Struct. 18, 551 (1982).
  • 加载中
图(14)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  101
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 录用日期:  2021-08-18
  • 网络出版日期:  2022-08-01
  • 发布日期:  2022-02-21
  • 刊出日期:  2022-03-01

目录

    /

    返回文章
    返回