留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of gauge corner lubrication on wheel/rail non-Hertzian contact and rail surface damage on the curves

Yang Yunfan Guo Xinru Ling Liang Wang Kaiyun Zhai Wanming

杨云帆, 郭欣茹, 凌亮, 王开云, 翟婉明. 曲线上轨距角润滑对轮轨非赫兹接触和钢轨表面疲劳损伤影响分析[J]. 机械工程学报, 2022, 38(3): 521522. doi: 10.1007/s10409-022-09002-x
引用本文: 杨云帆, 郭欣茹, 凌亮, 王开云, 翟婉明. 曲线上轨距角润滑对轮轨非赫兹接触和钢轨表面疲劳损伤影响分析[J]. 机械工程学报, 2022, 38(3): 521522. doi: 10.1007/s10409-022-09002-x
Y. Yang, X. Guo, L. Ling, K. Wang, and W. Zhai,Effect of gauge corner lubrication on wheel/rail non-Hertzian contact and rail surface damage on the curves. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-022-09002-x'>https://doi.org/10.1007/s10409-022-09002-x
Citation: Y. Yang, X. Guo, L. Ling, K. Wang, and W. Zhai,Effect of gauge corner lubrication on wheel/rail non-Hertzian contact and rail surface damage on the curves. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-022-09002-x">https://doi.org/10.1007/s10409-022-09002-x

Effect of gauge corner lubrication on wheel/rail non-Hertzian contact and rail surface damage on the curves

doi: 10.1007/s10409-022-09002-x
Funds: 

the National Key Research and Development Program of China Grant

the National Natural Science Foundation of China Grant

and the State Key Laboratory of Traction Power Grant

More Information
  • 摘要: 由于受到列车运营环境(轮轨黏着状态和车-线耦合振动)的影响, 轮轨系统动态相互作用呈现显著的非线性特征, 其对轮轨表面磨耗和疲劳伤损的研究至关重要. 在地铁曲线线路上, 为缓解高轨轨距角异常磨耗, 普遍安装了轨距角润滑装置. 本文从数值仿真的角度, 分析了在曲线上轨距角润滑对轮轨非赫兹接触和钢轨表面疲劳损伤的影响. 基于车-线耦合动力学理论, 建立了地铁车辆-板式轨道三维耦合动力学模型, 模型中考虑了一种精确的非赫兹轮轨滚动接触模型. 分析了轨距角润滑对轮轨蠕滑、接触应力、黏-滑分布以及钢轨表面疲劳损伤的影响. 数值研究表明, 在曲线线路上轨距角润滑对轮轨滚动接触影响显著; 另一方面, 轨距角润滑可显著降低轮轨摩擦系数, 从而可进一步缓解钢轨表面疲劳损伤.

     

  • 1.  Gauge corner lubrication device.

    2.  Flow diagram of rail surface RCF prediction model.

    3.  Calculation process of wheel/rail contact forces.

    4.  Spatial trace line and initial contact point of wheel/rail contact under different yaw angle of wheelset: a Ψ = 0 deg and b Ψ = 2 deg.

    5.  Wheel/rail normal contact considering the yaw angle [18]: a pressure distribution and b contact patch.

    6.  Friction coefficient along the transverse direction of rail profile [27].

    7.  Comparison results include the running velocity and vertical vibrations of the axlebox.

    8.  Outer and inner wheel/rail contact points on rail profile under the a coasting condition without RGCL, b coasting condition with RGCL, c traction condition without RGCL and d traction condition with RGCL. .

    9.  Dynamic responses of wheel/rail longitudinal creepage under the a coasting condition and b traction condition.

    10.  Dynamic responses of wheel/rail longitudinal creep force under the a coasting condition and b traction condition.

    11.  Pressure distributions of the outer and inner wheel/rail contact under the a coasting condition without RGCL, b coasting condition with RGCL, c traction condition without RGCL and d traction condition with RGCL.

    13.  Direction distributions of the shear stresses acting on rail surface of the outer and inner wheel/rail contact under the a coasting condition without RGCL, b coasting condition with RGCL, c traction condition without RGCL and d traction condition with RGCL.

    14.  Dynamic responses of global fatigue indexes (TFI) under the a coasting condition and b traction condition.

    15.  Energy dissipation distributions of the outer and inner wheel/rail contact under the a coasting condition without RGCL, b coasting condition with RGCL, c traction condition without RGCL and d traction condition with RGCL.

    16.  Fatigue index distributions of the outer and inner wheel/rail contact under the a coasting condition without RGCL, b coasting condition with RGCL, c traction condition without RGCL and d traction condition with RGCL.

    17.  Effect of RGCL on rail surface RCF with different curve radius: a coasting condition and b traction condition.

    18.  Effect of RGCL on rail surface RCF with different traction loadings.

    19.  Effect of RGCL on rail surface RCF with different friction coefficient: a coasting condition and b traction condition.

    12.  Shear stress distributions of the outer and inner wheel/rail contact under the a coasting condition without RGCL, b coasting condition with RGCL, c traction condition without RGCL and d traction condition with RGCL.

    20.  Schematic diagram of curve conditions and observed locations.

    21.  Comparison of rail surface RCF with different lubrication conditions: a outer rail and b inner rail.

    Table 1.   Key parameters for the dynamics model

    NotationSpecificationValue
    McCarbody mass (kg)32000
    MtBogie frame mass (kg)2500
    MwWheelset mass (kg)1276
    IcxRoll moment of inertia of cabody (kg m2)50977
    IcyPitch moment of inertia of cabody (kg m2)986316
    IczYaw moment of inertia of cabody (kg m2)987952
    ItxRoll moment of inertia of bogie frame (kg m2)1083
    ItyPitch moment of inertia of bogie frame (kg m2)417
    ItzYaw moment of inertia of bogie frame (kg m2)1044
    IwxRoll moment of inertia of wheelset (kg m2)580
    IwyPitch moment of inertia of wheelset (kg m2)50
    IwzYaw moment of inertia of wheelset (kg m2)580
    Kpx, CpxLongitudinal stiffness (kN/m) and damping (kN s/m) of primary suspension 5200, 5.0
    Kpy, CpyLateral stiffness (kN/m) and damping (kN s/m) of primary suspension 5200, 5.0
    Kpz, CpzVertical stiffness (kN/mm) and damping (kN s/m) of primary suspension 2500, 20
    Ksx, CsxLongitudinal stiffness (kN/m) and damping (kN s/m) of secondary suspension 250, 20
    Ksy, CsyLateral stiffness (kN/m) and damping (kN s/m) of secondary suspension 250, 20
    Ksz, CszVertical stiffness (kN/mm) and damping (kN s/m) of secondary suspension 600, 80
    lcHalf distance of the two wheelsets in bogie (m)5.03
    ltHalf distance of two bogies (m)1.0
    dwLateral half distance between primary suspension1.05
    dsLateral half distance between secondary suspension1.05
    RwWheel radius (m)0.42
    mrMass of rail per unit length (kg/m)60.64
    ErElastic modulus of rail (GPa)209
    υrPoisson ratio of track rail0.3
    ρrDensity of rail (kg/m3)7860
    ArCross-sectional area of rail (cm2)77.45
    EsElastic modulus of track slab (GPa)36.5
    υsPoisson ratio of track slab0.2
    lsLongitudinal distance of the adjacent fasteners (m)0.6
    Ls, Ws and HsLength, width and thickness of track slab (m)9, 3.15 and 0.5
    Kfx, CfxLongitudinal stiffness (MN/m) and damping (kN s/m) of fastener 10, 10
    Kfy, CfyLateral stiffness (MN/m) and damping (kN s/m) of fastener 20, 50
    Kfz, CfzVertical stiffness (MN/m) and damping (kN s/m) of fastener 40, 50
    Ksbz, CsbzVertical stiffness (MN/m3) and damping (kN s/m3) of CA mortar per unit area1250, 40
    下载: 导出CSV

    Table 2.   Key parameters for the curves and curve negotiation velocities

    Curve radius (m)Superelevation (mm)Traveling velocity (km/h)
    30012056
    40010560
    50010065
    6009569.5
    7007065
    8006666.5
    10005870
    下载: 导出CSV
  • [1] W. Zhai, X. Jin, Z. Wen, and X. Zhao, Wear problems of high-speed wheel/rail systems: Observations, causes, and countermeasures in China, Appl. Mech. Rev. 72, 060801 (2020).
    [2] L. Jing, K. Wang, and W. Zhai, Impact vibration behavior of railway vehicles: a state-of-the-art overview, Acta Mech. Sin. 37, 1193 (2021).
    [3] N. Burgelman, Z. Li, and R. Dollevoet, A new rolling contact method applied to conformal contact and the train-turnout interaction, Wear 321, 94 (2014).
    [4] S. S. Ding, Q. Li, A. Q. Tian, J. Du, and J. L. Liu, Aerodynamic design on high-speed trains, Acta Mech. Sin. 32, 215 (2016).
    [5] S. R. Lewis, R. Lewis, G. Evans, and L. E. Buckley-Johnstone, Assessment of railway curve lubricant performance using a twin-disc tester, Wear 314, 205 (2014).
    [6] V. Reddy, G. Chattopadhyay, P. O. Larsson-Kråik, and D. J. Hargreaves, Modelling and analysis of rail maintenance cost, Int. J. Prod. Eco. 105, 475 (2007).
    [7] C. Hardwick, R. Lewis, and D. T. Eadie, Wheel and rail wear—Understanding the effects of water and grease, Wear 314, 198 (2014).
    [8] W. J. Wang, R. Lewis, B. Yang, L. C. Guo, Q. Y. Liu, and M. H. Zhu, Wear and damage transitions of wheel and rail materials under various contact conditions, Wear 362-363, 146 (2016).
    [9] H. Chen, S. Fukagai, Y. Sone, T. Ban, and A. Namura, Assessment of lubricant applied to wheel/rail interface in curves, Wear 314, 228 (2014).
    [10] Y. Li, Z. Ren, R. Enblom, S. Stichel, and G. Li, Wheel wear prediction on a high-speed train in China, Vehicle Syst. Dyn. 58, 1839 (2019).
    [11] E. Butini, L. Marini, M. Meacci, E. Meli, A. Rindi, X. J. Zhao, and W. J. Wang, An innovative model for the prediction of wheel-Rail wear and rolling contact fatigue, Wear 436-437, 203025 (2019).
    [12] Y. Ye, Y. Sun, D. Shi, B. Peng, and M. Hecht, A wheel wear prediction model of non-Hertzian wheel-rail contact considering wheelset yaw: Comparison between simulated and field test results, Wear 474-475, 203715 (2021).
    [13] O. Arias-Cuevas, Z. Li, R. I. Popovici, and D. J. Schipper, Simulation of curving behaviour under high traction in lubricated wheel-rail contacts, Vehicle Syst. Dyn. 48, 299 (2010).
    [14] G. I. Alarcón, N. Burgelman, J. M. Meza, A. Toro, and Z. Li, The influence of rail lubrication on energy dissipation in the wheel/rail contact: A comparison of simulation results with field measurements, Wear 330-331, 533 (2015).
    [15] S. A. Khan, I. Persson, J. Lundberg, and C. Stenström, Prediction of top-of-rail friction control effects on rail RCF suppressed by wear, Wear 380-381, 106 (2017).
    [16] B. Liu, S. Bruni, and E. Vollebregt, A non-Hertzian method for solving wheel-rail normal contact problem taking into account the effect of yaw, Vehicle Syst. Dyn. 54, 1226 (2016).
    [17] B. Zhu, J. Zeng, D. Zhang, and Y. Wu, A non-Hertzian wheel-rail contact model considering wheelset yaw and its application in wheel wear prediction, Wear 432-433, 202958 (2019).
    [18] Y. Sun, W. Zhai, Y. Ye, L. Zhu, and Y. Guo, A simplified model for solving wheel-rail non-Hertzian normal contact problem under the influence of yaw angle, Int. J. Mech. Sci. 174, 105554 (2020).
    [19] W. M.Zhai, Vehicle-Track Coupled Dynamics (Springer, Singapore, 2020)
    [20] Y. Yang, X. Guo, Y. Sun, L. Ling, T. Zhang, K. Wang, and W. Zhai, Non-Hertzian contact analysis of heavy-haul locomotive wheel/rail dynamic interactions under changeable friction conditions, Vehicle Syst. Dyn. 1 (2021).
    [21] L. Ling, X. B. Xiao, and X. S. Jin, Development of a simulation model for dynamic derailment analysis of high-speed trains, Acta Mech. Sin. 30, 860 (2014).
    [22] N. Burgelman, M. S. Sichani, R. Enblom, M. Berg, Z. Li, and R. Dollevoet, Influence of wheel-rail contact modelling on vehicle dynamic simulation, Vehicle Syst. Dyn. 53, 1190 (2014).
    [23] J. Piotrowski, and W. Kik, A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations, Vehicle Syst. Dyn. 46, 27 (2008).
    [24] X. Quost, M. Sebes, A. Eddhahak, J. B. Ayasse, H. Chollet, P. E. Gautier, and F. Thouverez, Assessment of a semi-Hertzian method for determination of wheel-rail contact patch, Vehicle Syst. Dyn. 44, 789 (2006).
    [25] E. Meli, S. Magheri, and M. Malvezzi, Development and implementation of a differential elastic wheel-rail contact model for multibody applications, Vehicle Syst. Dyn. 49, 969 (2011).
    [26] M. S. Sichani, R. Enblom, and M. Berg, A novel method to model wheel-rail normal contact in vehicle dynamics simulation, Vehicle Syst. Dyn. 52, 1752 (2014).
    [27] M. Spiryagin, M. Sajjad, D. Nielsen, Y. Q. Sun, D. Raman, and G. Chattopadhyay, Research methodology for evaluation of top-of-rail friction management in Australian heavy haul networks, Proc. Instit. Mech. Eng. Part F-J. Rail Rapid Transit 228, 631 (2013).
    [28] M. S. Sichani, R. Enblom, and M. Berg, A fast wheel-rail contact model for application to damage analysis in vehicle dynamics simulation, Wear 366-367, 123 (2016).
    [29] U. Spangenberg, R. D. Fröhling, and P. S. Els, Influence of wheel and rail profile shape on the initiation of rolling contact fatigue cracks at high axle loads, Vehicle Syst. Dyn. 54, 638 (2016).
    [30] S. Hossein-Nia, M. S. Sichani, S. Stichel, and C. Casanueva, Wheel life prediction model—An alternative to the FASTSIM algorithm for RCF, Vehicle Syst. Dyn. 56, 1051 (2018).
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  55
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 录用日期:  2021-12-27
  • 网络出版日期:  2022-08-01
  • 发布日期:  2022-02-23
  • 刊出日期:  2022-03-01

目录

    /

    返回文章
    返回