Generalized Aifantis strain gradient plasticity model with internal length scale dependence on grain size, sample size and strain
doi: 10.1007/s10409-022-09009-2
-
摘要: 内禀材料长度是应变梯度塑性理论中最重要的参数, 被用于成功地解释了微尺度下金属材料的尺寸效应. 内禀材料长度在应变梯度框架中通常扮演着平衡量纲的角色, 并且其取值依赖于模型. 目前, 内禀材料长度物理意义、与材料微观结构的关联以及随变形的演化尚未完全明确. 本研究对Aifantis应变梯度塑性模型进行了修正, 在其中引入了一个最新提出的幂律形式的内禀材料长度演化关系. 在此基础上进一步考虑晶粒尺寸效应, 基于Hall-Petch关系对Aifantis应变梯度塑性模型进行了扩展. 使用上述修正的模型对细丝扭转的实验结果进行了模拟, 研究结果表明, 内禀材料长度同时取决于试样尺寸和晶粒尺寸, 这些相关性主要由位错间距决定, 并可以通过应变硬化指数很好地描述. 此外, 原始Aifantis模型和修正的Aifantis模型中的内禀材料长度的取值均比Fleck-Hutchinson模型的取值更大.Abstract: The internal length scale (ILS) is a dominant parameter in strain gradient plasticity (SGP) theories, which helps to successfully explain the size effect of metals at the microscale. However, the ILS is usually introduced into strain gradient frameworks for dimensional consistency and is model-dependent. Even now, its physical meaning, connection with the microstructure of the material, and dependence on the strain level have not been thoroughly elucidated. In the current work, Aifantis’ SGP model is reformulated by incorporating a recently proposed power-law relation for strain-dependent ILS. A further extension of Aifantis’ SGP model by including the grain size effect is conducted according to the Hall-Petch formulation, and then the predictions are compared with torsion experiments of thin wires. It is revealed that the ILS depends on the sample size and grain size simultaneously; these dependencies are dominated by the dislocation spacing and can be well described through the strain hardening exponent. Furthermore, both the original and generalized Aifantis models provide larger estimated values for the ILS than Fleck-Hutchinson’s theory.
-
Key words:
- Strain gradient plasticity theory /
- Internal length scale /
- Sample size /
- Grain size
-
1. Comparison of the modeling results using Aifantis’ theory with experimental results [42].
2. The comparison between the modeling results by the grain size-dependent Aifantis’ SGP theory and the experimental measurements of Gan et al. [45].
3. Comparisons between the modeling results by the generalized Aifantis’ SGP theory and the experimental measurements of Liu et al. [42].
4. Comparisons between the generalized Aifantis’ SGP modeling results and the experimental results of Gan et al. [45].
Table 2. Model parameters for torsion experiments of Gan et al. [45] using Aifantis’ SGP model with grain size dependence, as expressed by Eq. (14)
D (μm) d (μm) n (MPa) kHP(MPa μm1/2) c0 (mN) l0 (μm) 20 0.63 0.023 71.4 54.9 1.12 2.82 1.25 0.061 3.05 2.4 0.110 3.23 3.86 0.133 3.36 8.55 0.144 3.52 8.93 0.185 3.53 50 0.49 0.046 103.8 73.8 1.63 2.79 0.84 0.049 2.97 1.89 0.088 3.22 4.14 0.153 3.41 5.34 0.191 3.47 12.74 0.233 3.62 Table 3. Parameters for the torsion experiments of Gan et al. [45] using the grain size-dependent Aifantis SGP model, as expressed in Eq. (16)
D (μm) d (μm) n (MPa) kHP (MPa μm1/2) l0 (μm) 20 0.63 0.023 91.1 51.3 1.98 1.25 0.061 2.4 0.110 3.86 0.133 8.55 0.144 8.93 0.185 50 0.49 0.046 74 44.8 11.0 0.84 0.049 1.89 0.088 4.14 0.153 5.3412.74 0.1910.233 Table 4. Model parameters for torsion experiments of Liu et al. [42] using the generalized Aifantis’ SGP model, as expressed in Eq. (25)
D (μm) n κ0 (MPa) l0 (μm) 18 0.21 367.9 1.40 30 0.26 42 0.28 105 0.31 Table 5. Model parameters for the torsion experiments of Gan et al. [45] using the generalized Aifantis’ SGP model with grain size dependence, as expressed by Eq. (27)
D (μm) d (μm) n (MPa) kHP (MPa μm1/2) l0 (μm) 20 0.63 0.019 95.7 59.2 2.88 1.25 0.056 2.4 0.104 3.86 0.127 8.55 0.137 8.93 0.180 50 0.49 0.030 86.6 78.7 13.9 0.84 0.027 1.89 0.059 4.14 0.122 5.34 0.162 12.74 0.204 Table 6. Obtained ILSs using various models in the torsion of thin copper wires
-
[1] N. A. Fleck, and J. W. Hutchinson, Strain gradient plasticity, Adv. Appl. Mech. 33 , 295 (1997)[2] H. Gao, Mechanism-based strain gradient plasticity―I. Theory, J. Mech. Phys. Solids 47, 1239 (1999). [3] S. H. Chen, and T. C. Wang, A new deformation theory with strain gradient effects, Int. J. Plast. 18, 971 (2002). [4] M. E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, J. Mech. Phys. Solids 50, 5 (2002). [5] P. Gudmundson, A unified treatment of strain gradient plasticity, J. Mech. Phys. Solids 52, 1379 31611720(2004). [6] Y. Huang, S. Qu, K. C. Hwang, M. Li, and H. Gao, A conventional theory of mechanism-based strain gradient plasticity, Int. J. Plast. 20, 753 (2004). [7] G. Z. Voyiadjis, and R. K. Abu Al-Rub, Gradient plasticity theory with a variable length scale parameter, Int. J. Solids Struct. 42, 3998 (2005). [8] Y. Wei, A new finite element method for strain gradient theories and applications to fracture analyses, Eur. J. Mech. A Solids 25, 897 (2006). [9] R. K. Abu Al-Rub, and G. Z. Voyiadjis, A physically based gradient plasticity theory, Int. J. Plast. 22, 654 (2006). [10] G. Z. Voyiadjis, and D. Faghihi, Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales, Int. J. Plast. 30-31, 218 (2012). [11] H. Ban, Z. Peng, D. Fang, Y. Yao, and S. Chen, A modified conventional theory of mechanism-based strain gradient plasticity considering both size and damage effects, Int. J. Solids Struct. 202, 384 (2020). [12] J. W. Hutchinson, Generalizing J2 flow theory: Fundamental issues in strain gradient plasticity, Acta Mech. Sin. 28, 1078 (2012). [13] F. Hua, and D. Liu, On dissipative gradient effect in higher-order strain gradient plasticity: the modelling of surface passivation, Acta Mech. Sin. 36, 840 (2020). [14] J. R. Willis, Some forms and properties of models of strain-gradient plasticity, J. Mech. Phys. Solids 123, 348 (2019). [15] G. Zhou, W. Jeong, E. R. Homer, D. T. Fullwood, M. G. Lee, J. H. Kim, H. Lim, H. Zbib, and R. H. Wagoner, A predictive strain-gradient model with no undetermined constants or length scales, J. Mech. Phys. Solids 145, 104178 (2020). [16] P. Gudmundson, and C. F. O. Dahlberg, Isotropic strain gradient plasticity model based on self-energies of dislocations and the Taylor model for plastic dissipation, Int. J. Plast. 121, 1 (2019). [17] N. A. Fleck, and J. R. Willis, Strain gradient plasticity: energetic or dissipative?, Acta Mech. Sin. 31, 465 (2015). [18] E. C. Aifantis, On the microstructural origin of certain inelastic models, J. Eng. Mater. Tech. 106, 326 (1984). [19] E. C. Aifantis, The physics of plastic deformation, Int. J. Plast. 3, 211 (1987). [20] X. Zhang, X. Li, and H. Gao, Size and strain rate effects in tensile strength of penta-twinned Ag nanowires, Acta Mech. Sin. 33, 792 (2017). [21] A. Panteghini, and L. Bardella, Modelling the cyclic torsion of polycrystalline micron-sized copper wires by distortion gradient plasticity, Philos. Mag. 100, 2352 (2020). [22] F. Shuang, and K. E. Aifantis, Modelling dislocation-graphene interactions in a BCC Fe matrix by molecular dynamics simulations and gradient plasticity theory, Appl. Surf. Sci. 535, 147602 (2021). [23] L. Wang, J. Xu, J. Wang, and B. L. Karihaloo, Nonlocal thermo-elastic constitutive relation of fibre-reinforced composites, Acta Mech. Sin. 36, 176 (2020). [24] W. D. Nix, and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids 46, 411 (1998). [25] R. K. Abu Al-Rub, and G. Z. Voyiadjis, Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments, Int. J. Plast. 20, 1139 (2004). [26] X. Zhang, and K. E. Aifantis, Examining the evolution of the internal length as a function of plastic strain, Mater. Sci. Eng. A 631, 27 (2015). [27] J. Zhao, X. Zhang, A. A. Konstantinidis, and G. Kang, Correlating the internal length in strain gradient plasticity theory with the microstructure of material, Philos. Mag. Lett. 95, 340 (2015). [28] D. Liu, and D. J. Dunstan, Material length scale of strain gradient plasticity: A physical interpretation, Int. J. Plast. 98, 156 (2017). [29] J. Song, and Y. Wei, A method to determine material length scale parameters in elastic strain gradient theory, J. Appl. Mech. 87, 031010 (2020). [30] C. F. O. Dahlberg, and M. Boåsen, Evolution of the length scale in strain gradient plasticity, Int. J. Plast. 112, 220 (2019). [31] X. Zhang, K. E. Aifantis, J. Senger, D. Weygand, and M. Zaiser, Internal length scale and grain boundary yield strength in gradient models of polycrystal plasticity: How do they relate to the dislocation microstructure?, J. Mater. Res. 29, 2116 (2014). [32] G. Z. Voyiadjis, and Y. Song, Strain gradient continuum plasticity theories: Theoretical, numerical and experimental investigations, Int. J. Plast. 121, 21 (2019). [33] N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, Strain gradient plasticity: Theory and experiment, Acta Metall. Mater. 42, 475 (1994). [34] Z. Li, Y. He, J. Lei, S. Guo, D. Liu, and L. Wang, A standard experimental method for determining the material length scale based on modified couple stress theory, Int. J. Mech. Sci. 141, 198 (2018). [35] J. S. Stölken, and A. G. Evans, A microbend test method for measuring the plasticity length scale, Acta Mater. 46, 5109 (1998). [36] K. W. McElhaney, J. J. Vlassak, and W. D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res. 13, 1300 (1998). [37] S. Guo, Y. He, J. Lei, Z. Li, and D. Liu, Individual strain gradient effect on torsional strength of electropolished microscale copper wires, Scripta Mater. 130, 124 (2017). [38] S. P. Iliev, X. Chen, M. V. Pathan, and V. L. Tagarielli, Measurements of the mechanical response of Indium and of its size dependence in bending and indentation, Mater. Sci. Eng. A 683, 244 (2017). [39] I. Tsagrakis, and E. C. Aifantis, Recent developments in gradient plasticity—Part I: formulation and size effects, J. Eng. Mater. Tech. 124, 352 (2002). [40] R. Abu Al-Rub, and G. Z. Voyiadjis, Determination of the material intrinsic length scale of gradient plasticity theory, IUTAM Symp. Mult. Model. Charact. Elastic-Inelastic Behav. Eng. Mater. 114 , 167 (2004)[41] E. Martínez-Pañeda, V. S. Deshpande, C. F. Niordson, and N. A. Fleck, The role of plastic strain gradients in the crack growth resistance of metals, J. Mech. Phys. Solids 126, 136 (2019). [42] D. Liu, Y. He, X. Tang, H. Ding, P. Hu, and P. Cao, Size effects in the torsion of microscale copper wires: Experiment and analysis, Scripta Mater. 66, 406 (2012). [43] E. O. Hall, The deformation and ageing of mild steel: III Discussion of results, Proc. Phys. Soc. Sect. B 64 , 747 (1951)[44] N. J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 , 25 (1953)[45] Z. Gan, Y. He, D. Liu, B. Zhang, and L. Shen, Hall-Petch effect and strain gradient effect in the torsion of thin gold wires, Scripta Mater. 87, 41 (2014). [46] J. Zhao, X. Lu, F. Yuan, Q. Kan, S. Qu, G. Kang, and X. Zhang, Multiple mechanism based constitutive modeling of gradient nanograined material, Int. J. Plast. 125, 314 (2020). [47] X. Lu, J. Zhao, C. Yu, Z. Li, Q. Kan, G. Kang, and X. Zhang, Cyclic plasticity of an interstitial high-entropy alloy: experiments, crystal plasticity modeling, and simulations, J. Mech. Phys. Solids 142, 103971 (2020). [48] M. R. Begley, and J. W. Hutchinson, The mechanics of size-dependent indentation, J. Mech. Phys. Solids 46, 2049 (1998). [49] M. A. Khorshidi, The material length scale parameter used in couple stress theories is not a material constant, Int. J. Eng. Sci. 133, 15 (2018). [50] I. Groma, F. F. Csikor, and M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta Mater. 51, 1271 (2003). [51] L. P. Evers, W. A. M. Brekelmans, and M. G. D. Geers, Non-local crystal plasticity model with intrinsic SSD and GND effects, J. Mech. Phys. Solids 52, 2379 (2004).