留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工智能在角膜相关疾病领域的应用研究

狄宇 李莹

狄宇, 李莹. 人工智能在角膜相关疾病领域的应用研究[J]. 机械工程学报, 2021, 12(5): 761-767. doi: 10.12290/xhyxzz.2020-0098
引用本文: 狄宇, 李莹. 人工智能在角膜相关疾病领域的应用研究[J]. 机械工程学报, 2021, 12(5): 761-767. doi: 10.12290/xhyxzz.2020-0098
DI Yu, LI Ying. The Application and Research Progress of Artificial Intelligence in Corneal Related Diseases[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 761-767. doi: 10.12290/xhyxzz.2020-0098
Citation: DI Yu, LI Ying. The Application and Research Progress of Artificial Intelligence in Corneal Related Diseases[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 761-767. doi: 10.12290/xhyxzz.2020-0098

人工智能在角膜相关疾病领域的应用研究

doi: 10.12290/xhyxzz.2020-0098
基金项目: 

白求恩·干眼诊疗与研究科研项目 BJ-GY2021015J

详细信息
    通讯作者:

    李莹  电话:010-69152733,E-mail: liyingpumch@126.com

  • 中图分类号: R770.4; TP18

The Application and Research Progress of Artificial Intelligence in Corneal Related Diseases

Funds: 

Bethune·Dry eye Diagnosis and Treatment Research Project BJ-GY2021015J

More Information
  • 摘要: 人工智能(artificial intelligence,AI)是计算机领域的前沿科学,近年来在众多领域发展迅猛,其在眼科的研究和应用也日益增多。AI在角膜相关疾病领域的研究主要包括圆锥角膜的早期诊断及分级、角膜屈光手术相关评估、感染性角膜炎的分类及程度判断、角膜移植术后再干预的评估等,主要采用的算法包括神经网络、支持向量机及决策树,模型的灵敏度和特异度均达90%以上。AI可为医生提供客观的临床决策、为患者提供精准的治疗奠定基础。本文将对近年来AI在角膜相关疾病领域的应用研究进行综述。

     

  • 表  1  圆锥角膜相关AI研究

    年份(年) 研究者 图像采集仪器 样本量(n) 分组情况 输入参数 AI算法 评价指标
    AUC 灵敏度 特异度
    2020 Kuo[16] TMS-4 326 圆锥角膜组,正常对照组 / VGG16 0.931 0.917 0.944
    Inception 0.931 0.917 0.944
    V3 0.958 0.944 0.972
    2019 Kamiya[17] CASIA 304 Ⅰ~Ⅳ级圆锥角膜组,正常对照组 / ResNet152 / 1.000 0.984
    2019 Lavric[18] Pentacam 1350 圆锥角膜组,正常对照组 / CNN 0.993 / /
    2019 Issarti[19] Pentacam 838 中重度圆锥角膜组,可疑圆锥角膜组,正常对照组 / FNN 0.966 0.956 0.978
    2018 Yousefi[20] CASIA 3156 Ⅰ~Ⅳ级圆锥角膜组,正常对照组 420个 非监督ML / 0.977 0.941
    2017 Hidalgo[21] Pentacam 135 圆锥角膜组,角膜屈光术后组,正常对照组 22个 CNN 0.989 0.991 0.985
    2016 Hidalgo[22] Pentacam 860 圆锥角膜组,顿挫型圆锥角膜组,正常对照组 25个 SVM 0.989 0.991 /
    2016 Kovács[23] Pentacam 135 双侧圆锥角膜组,单侧圆锥角膜组,正常对照组 15个 MLPNN 0.99 0.901.00 0.900.95
    2013 Smadja[24] Gailei 372 圆锥角膜组,顿挫型圆锥角膜组,正常对照组 55个 决策树 / 0.995 1.00
    2012 Arbelaez[25] Sirius 3502 圆锥角膜组,顿挫型圆锥角膜组,角膜屈光术后组,正常对照组 7个 SVM 0.982 0.95 0.993
    2010 Souza[26] OrbscanⅡ 318 圆锥角膜组,角膜屈光术后组,正常对照组 / SVM 0.99 1.00 1.00
    MLPNN 0.99 1.00 1.00
    RBFNN 0.99 0.98 0.98
    2005 Twa[27] Keratron 244 圆锥角膜组,正常对照组 / 决策树 0.93 0.93 0.92
    2002 Accardo[28] EyeSys 396 圆锥角膜组,正常对照组 9个 CNN 0.967 0.976 0.941
    1997 Smolek[29] TMS-1 300 圆锥角膜组,可疑圆锥角膜组 10个 CNN 1.00 1.00 1.00
    AI:人工智能;AUC:曲线下面积;CNN:卷积神经网络;FNN:前馈神经网络;ML:机器学习;SVM:支持向量机;MLPNN:多层感知器神经网络;RBFNN:径向基函数神经网络
    下载: 导出CSV
  • [1] Rahimy E. Deep learning application in ophthalmology[J]. Curr Opin Ophthalmol, 2018, 29: 254-260. doi: 10.1097/ICU.0000000000000470
    [2] Lawrence DR, Palacios-González C, Harris J. Artificial intelligence[J]. Camb Q Healthc Ehics, 2016, 25: 250-261. doi: 10.1017/S0963180115000559
    [3] 陈有信, 张碧磊, 张弘哲. 眼科人工智能技术的现状与问题[J]. 中华眼底病杂志, 2019, 35: 119-123.

    Chen YX, Zhang BL, Zhang HZ. Insights and prospectives of ophthalmologic artificial intelligence technology[J]. Zhonghua Yandibing Zazhi, 2019, 35: 119-123.
    [4] Gulshan V, Peng L, Coram M, et al. Development and validation of deep learning algorithm for detection of retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316: 2402-2410. doi: 10.1001/jama.2016.17216
    [5] Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural network[J]. JAMA Ophthalmol, 2017, 135: 1170-1176. doi: 10.1001/jamaophthalmol.2017.3782
    [6] Wu X, Huang Y, Liu Z, et al. Universal artificial intelligence platform for collaborative management of cataracts[J]. Br J Ophthalmol, 2019, 103: 1553-1560. doi: 10.1136/bjophthalmol-2019-314729
    [7] Asaoka R, Murata H, Iwase A, et al. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier[J]. Ophthalmology, 2016, 123: 1974-1980. doi: 10.1016/j.ophtha.2016.05.029
    [8] Wu XH, Liu L, Zhao L, et al. Application of artificial intelligence in anterior segment ophthalmic disease: diversity and standardization[J]. Ann Transl Med, 2020, 8: 714. doi: 10.21037/atm-20-976
    [9] Mahesh Kumar SV, Gunasundari R. Computer-aided diagnosis of anterior segment eye abnormalities using visible wavelength image analysis based machine learning[J]. J Med Syst, 2018, 42: 128. doi: 10.1007/s10916-018-0980-z
    [10] Long EP, Lin HT, Liu ZZ, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J]. Nat Biomed Eng, 2017, 1: 0024. doi: 10.1038/s41551-016-0024
    [11] Fu H, Baskaran M, Xu Y, et al. A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images[J]. Am J Ophthalmol, 2019, 203: 37-45. doi: 10.1016/j.ajo.2019.02.028
    [12] Aloudat M, Faezipour M, El-Sayed A. High intraocular pressure detection from frontal eye images: a machine lean-ing based approach[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018: 5406-5409. http://www.ncbi.nlm.nih.gov/pubmed/30441559
    [13] Godefrooij DA, de Wit GA, Uiterwaal CS, et al. Age-Specific incidence and prevalence of keratoconus: a nationwide registration study[J]. Am J Ophthalmol, 2017, 175: 169-172. doi: 10.1016/j.ajo.2016.12.015
    [14] de Sanctis U, Loiacono C, Richiardi L, et al. Sensitivity and specificity of posterior cornea elevation measure by Pentacam in discriminating keratoconus/subclinical keratoconus[J]. Ophthalmology, 2008, 115: 1534-1539. doi: 10.1016/j.ophtha.2008.02.020
    [15] Gordon-Shaag A, Millodot M, Ifrah R, et al. aberrations and tomography in normal, keratoconus-suspect, and keratoconic eyes[J]. Optom Vis Sci, 2012, 89: 411-418. doi: 10.1097/OPX.0b013e318249d727
    [16] Kuo BI, Chang WY, Liao TS, et al. Keratoconus screening based on deep learning approach of corneal topography[J]. Transl Vis Sci Technol, 2020, 25: 53. http://www.researchgate.net/publication/345453287_Keratoconus_Screening_Based_on_Deep_Learning_Approach_of_Corneal_Topography
    [17] Kamiya K, Ayatsuka Y, Kato Y, et al. Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study[J]. BMJ Open, 2019, 9: e021313. http://bmjopen.bmj.com/content/9/9/e031313.full
    [18] Lavric A, Valentin P. KeratoDetect: keratoconus detection algorithm using Convolutional neural networks[J]. Comput Intell Neurosci, 2019: 8162567. http://downloads.hindawi.com/journals/cin/2019/8162567.pdf
    [19] Issarti I, Consejo A, Jiménez-García M, et al. Computer aided diagnosis for suspect keratoconus detection[J]. Comput Biol Med, 2019, 109: 33-42. doi: 10.1016/j.compbiomed.2019.04.024
    [20] Yousefi S, Yousefi E, Takahashi H, et al. Keratoconus severity identification using unsupervised machine learning[J]. PLoS One, 2018, 13: e0205998. doi: 10.1371/journal.pone.0205998
    [21] Hidalgo IR, Rozema JJ, Saad A, et al. Validation of an objective keratoconus detection system implemented in a scheimpflug Tomographer and comparison with other methods[J]. Cornea, 2017, 36: 689-695. doi: 10.1097/ICO.0000000000001194
    [22] Hidalgo IR, Rodrigues P, Rozema JJ, et al. Evaluation of a Machine-Learning classifier for keratoconus detection based on scheimpflug tomography[J]. Cornea, 2016, 35: 827-832. doi: 10.1097/ICO.0000000000000834
    [23] Kovács I, Miháltz K, Kránitz K, et al. Accuracy of machine learning classifiers using bilateral data from a scheimpflug camera for identifying eyes with preclinical signs of keratoconus[J]. J Cataract Refract Surg, 2016, 42: 275-283. doi: 10.1016/j.jcrs.2015.09.020
    [24] Smadja D, Touboul D, Cohen A, et al. Detection of subclinical keratoconus using an automated decision tree classification[J]. Am J Ophthalmol, 2013, 156: 237-246. doi: 10.1016/j.ajo.2013.03.034
    [25] Arbelaez MC, Versaci F, Vestri G, et al. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data[J]. Ophthalmology, 2012, 119: 2231-2238. doi: 10.1016/j.ophtha.2012.06.005
    [26] Souza MB, Medeiros FM, Souza DB, et al. Evaluation of machine learning classifiers in keratoconus detection from Orbscan Ⅱ examinations[J]. Clnics(Sap Paulo), 2010, 65: 1223-1228. http://www.onacademic.com/detail/journal_1000040504536110_7e67.html
    [27] Twa M, Parthasarathy S, Cynthia R, et al. Automated decision tree classification of corneal shape[J]. Optom Vis Sci, 2005, 82: 1038-1046. doi: 10.1097/01.opx.0000192350.01045.6f
    [28] Accardo PA, Pensiero S. Neural network-based system for early keratoconus detection from corneal topography[J]. J Biomed Inform, 2002, 35: 151-159. doi: 10.1016/S1532-0464(02)00513-0
    [29] Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach[J]. Invest Ophthalmol Vis Sci, 1997, 38: 2290-2299. http://www.researchgate.net/profile/Stephen_Klyce/publication/13885016_Current_keratoconus_detection_methods_compared_with_a_neural_network_approach/links/53f33d3d0cf2dd48950c9d4e
    [30] 王雁, 李晶. 正确应对角膜屈光手术发展中的问题及挑战[J]. 中华眼科杂志, 2018, 54: 3-6.

    Wang Y, Li J. Problems and challenges in the development of corneal refractive surgery[J]. Zhonghua Yanke Zazhi, 2018, 54: 3-6.
    [31] Sayegh FN. Age and refractive in 46, 000 patients as a potential predictor of refractive stability after refractive surgery[J]. J Refract Surg, 2009, 25: 747-751. doi: 10.3928/1081597X-20090707-10
    [32] Saad A, Gatinel D. Combining Placido and corneal wavefront data for the detection of forme fruste keratoconus[J]. J Refract Surg, 2016, 32: 510-516. doi: 10.3928/1081597X-20160523-01
    [33] Lopes BT, Ramos IC, Salomão MQ, et al. Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence[J]. Am J Ophthalmol, 2018, 195: 223-232. doi: 10.1016/j.ajo.2018.08.005
    [34] Yoo TK, Ryu IH, Lee GY, et al. Adopting machine learn-ing to automatically identify candidate patients for corneal refractive surgery[J]. NPJ Digit Med, 2019, 2: 59. doi: 10.1038/s41746-019-0135-8
    [35] Cui T, Wang Y, Ji SF, et al. Applying Machine Learning Techniques in Prediction and Analysis for SMILE Treatment[J]. Am J Ophthalmol, 2019, 210: 71-77. http://www.sciencedirect.com/science/article/pii/S0002939419305082
    [36] Ung L, Bispo PJM, Shanbhag SS, et al. The persistent dilemma of microbial keratitis: global burden, diagnosis, and antimicrobial resistance[J]. Surv Ophthalmol, 2019, 64: 255-271. doi: 10.1016/j.survophthal.2018.12.003
    [37] Saini JS, Jain AK, Kumar S, et al. Neural network approach to classify infective keratitis[J]. Curr Eye Res, 2003, 27: 111-116. doi: 10.1076/ceyr.27.2.111.15949
    [38] Wu XL, Qiu QC, Liu Z, et al. Hyphae Detection in Fungal Keratitis Images With Adaptive Robust Binary Pattern[J]. IEEE Access, 2018, 6: 13449-13460. doi: 10.1109/ACCESS.2018.2808941
    [39] Liu Z, Cao YK, Li YJ, et al. Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network[J]. Comput Methods Programs Biomed, 2020, 187: 105019. doi: 10.1016/j.cmpb.2019.105019
    [40] 刁玉梅, 洪晶. 角膜后弹力层内皮移植术的研究进展[J]. 中华眼科杂志, 2015, 51: 544-547. doi: 10.3760/cma.j.issn.0412-4081.2015.07.018

    Diao YM, Hong J. Research advances of Descemet's membrane endothelial keratoplasty[J]. Zhonghua Yanke Zazhi, 2015, 51: 544-547. doi: 10.3760/cma.j.issn.0412-4081.2015.07.018
    [41] Treder M, Lauermann JL, Alnawaiseh M, et al. Using Deep Learning in Automated Detection of Graft Detachment in Descemet Membrane Endothelial Keratoplasty: A Pilot Study[J]. Cornea, 2019, 38: 157-161. doi: 10.1097/ICO.0000000000001776
    [42] Hayashi T, Hitoshi T, Masumoto H, et al. A Deep Learning Approach in Rebubbling After Descemet's Membrane Endothelial Keratoplasty[J]. Eye Contact Lens, 2020, 46: 121-126 doi: 10.1097/ICL.0000000000000634
    [43] Dabbah MA, Graham J, Petropoulos I, et al. Dual-Model Automatic Detection of Nerve-Fibres in Corneal Confocal Microscopy Images[J]. Med Image Comput Comput Assist Inter, 2010, 13: 300-307. http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=PMC3066470&blobtype=pdf
    [44] Chen X, Graham J, Dabbah MA, et al. An Automatic Tool for Quantification of Nerve Fibres in Corneal Confocal Microscopy Images[J]. IEEE Trans Biomed Eng, 2017, 64: 786-794. doi: 10.1109/TBME.2016.2573642
    [45] Li Q, Zhong Y, Zhang T, et al. Quantitative analysis of corneal nerve fibers in type 2 diabetics with and without diabetic peripheral neuropathy: Comparison of manual and automated assessments[J]. Diabetes Res Clin Pract, 2019, 151: 33-38. doi: 10.1016/j.diabres.2019.03.039
    [46] Lopez YP, Aguilera LR. Automatic classification of pterygium-non pterygium images using deep learning[M/OL]. (2019-09-28). [2020-12-27]. https://link.springer.com/chapter/10.1007%2F978-3-030-32040-9_40.
    [47] Zulkifley MA, Abdani SR, Zulkifley NH. Pterygium-Net: a deep learning approach to pterygium detection and localization[J]. Multimed Tools Appl, 2019, 78: 34563-34584. doi: 10.1007/s11042-019-08130-x
    [48] Wan Zaki WMD, Mat Daud M, Abdani SR, et al. Automated pterygium detection method of anterior segment photographed images[J]. Comput Methods Programs Biomed, 2018, 154: 71-78. doi: 10.1016/j.cmpb.2017.10.026
  • 加载中
表(1)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  146
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-27
  • 录用日期:  2021-01-11
  • 网络出版日期:  2021-11-26
  • 发布日期:  2021-09-01
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回