[1] |
Working Group 2 of the Joint Committee for Guides in Metrology. International vocabulary of metrology-Basic and general concepts and associated terms (VIM)[S]. [2021-06-08]. https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf.
|
[2] |
McAllister J. Standards, Specifications, Protocols, Methods, and Codes[EB/OL]. (2020-09-16)[2021-06-08]. https://uark.libguides.com/Standards/Home.
|
[3] |
International Organization for Standardization. Standardization and related activities-General vocabulary[S]. [2021-06-08]. https://www.iso.org/obp/ui/#iso:std:iso-iec:guide:2:ed-8:v1:en.
|
[4] |
Bidgood WD Jr, Horii SC, Prior FW, et al. Understanding and using DICOM, the data interchange standard for biomedical imaging[J]. J Am Med Inform Assoc, 1997, 4: 199-212. doi: 10.1136/jamia.1997.0040199
|
[5] |
Wikipedia. Algorithm[EB/OL]. (2021-06-12)[2021-07-05]. https://en.wikipedia.org/wiki/Algorithm.
|
[6] |
Price WN, Cohen IG. Privacy in the age of medical big data[J]. Nat Med, 2019, 25: 37-43. doi: 10.1038/s41591-018-0272-7
|
[7] |
World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision[EB/OL]. [2021-06-08]. https://icd.who.int/browse10/2010/en.
|
[8] |
LOINC. What LOINC is[EB/OL]. [2021-08-20]. https://loinc.org/get-started/what-loinc-is/.
|
[9] |
SNOMED. SNOMED CT[EB/OL]. [2021-08-20]. https://www.snomed.org/snomed-ct/why-snomed-ct.
|
[10] |
George WB, Stan H, Wesley R. HL7 V3 Message Development Framework[EB/OL]. (1999-11)[2021-08-20]. http://www.hl7.org/documentcenter/public/wg/mnm/Mdf99.pdf.
|
[11] |
国家卫生计生委. 关于发布《电子病历共享文档规范第1部分: 病历概要》等57项卫生行业标准的通告[EB/OL]. (2016-09-12)[2021-08-20]. http://www.nhc.gov.cn/fzs/s7852d/201609/37f11aacca5a49c2ad0984c8fc7a2873.shtml.
|
[12] |
中国医师协会. 关于发布《肝胆疾病标准数据规范》3项团体标准的公告[EB/OL]. (2020-10-10)[2021-08-20]. http://www.ttbz.org.cn/UploadFiles/StandardFpdFile/20201018233559493.pdf.
|
[13] |
Rivera SC, Liu X, Chan AW, et al. Guidelines for clinical trial protocols for interventions involving artificial intelli-gence: the SPIRIT-AI extension[J]. Nat Med, 2020, 26: 1351-1363. doi: 10.1038/s41591-020-1037-7
|
[14] |
Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists[J]. PLoS Med, 2018, 15: e1002686. doi: 10.1371/journal.pmed.1002686
|
[15] |
De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24: 1342-1350. doi: 10.1038/s41591-018-0107-6
|
[16] |
Yim J, Chopra R, Spitz T, et al. Predicting conversion to wet age-related macular degeneration using deep learning[J]. Nat Med, 2020, 26: 892-899. doi: 10.1038/s41591-020-0867-7
|
[17] |
Kim H, Goo JM, Lee KH, et al. Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas[J]. Radiology, 2020, 296: 216-224. doi: 10.1148/radiol.2020192764
|
[18] |
McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening[J]. Nature, 2020, 577: 89-94. doi: 10.1038/s41586-019-1799-6
|
[19] |
Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study[J]. Gut, 2019, 68: 1813-1819. doi: 10.1136/gutjnl-2018-317500
|
[20] |
Tyler NS, Mosquera-Lopez CM, Wilson LM, et al. An artificial intelligence decision support system for the management of type 1 diabetes[J]. Nat Metab, 2020, 2: 612-619. doi: 10.1038/s42255-020-0212-y
|
[21] |
国家药品监督管理局医疗器械技术审评中心. 关于发布深度学习辅助决策医疗器械软件审评要点的通告[EB/OL]. (2019-07-03)[2021-07-05]. https://www.cmde.org.cn/CL0004/19360.html.
|
[22] |
Food and Drug Administration. Artificial Intelligence and Machine Learning (AI/ML) Software as a Medical Device Action Plan[EB/OL]. (2021-01-12)[2021-07-05]. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-soft-ware-medical-device.
|
[23] |
Petersen RC, Aisen PS, Beckett LA, et al. Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization[J]. Neurology, 2010, 74: 201-209. doi: 10.1212/WNL.0b013e3181cb3e25
|
[24] |
Johnson A, Pollard T, Shen L, et al. MIMIC-Ⅲ, a freely accessible critical care database[J]. Sci Data, 2016, 3: 160035. doi: 10.1038/sdata.2016.35
|
[25] |
Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge[J]. Contemp Oncol (Pozn), 2019, 19: A68-A77. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.809.8713&rep=rep1&type=pdf
|
[26] |
Allen GI, Amoroso N, Anghel C, et al. Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease[J]. Alzheimers Dement, 2016, 12: 645-653. doi: 10.1016/j.jalz.2016.02.006
|
[27] |
Christov SC, Avrunin GS, Clarke LA, et al. A benchmark for evaluating software engineering techniques for improving medical processes[C]. Proceedings of the 2010 ICSE Workshop on Software Engineering in Health Care, 2010: 50-56.
|
[28] |
Shamir L, Orlov N, Mark Eckley D, et al. ⅡCBU 2008: a proposed benchmark suite for biological image analysis[J]. Med Biol Eng Comput, 2008, 46: 943-947. doi: 10.1007/s11517-008-0380-5
|
[29] |
Zhang Z, Gao W, Zhang F, et al. Landscape of Big Medical Data: A Pragmatic Survey on Prioritized Tasks[J]. IEEE Access, 2019, 7: 15590-15611. doi: 10.1109/ACCESS.2019.2891948
|
[30] |
Liu X, Rivera SC, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension[J]. Nat Med, 2020, 26: 1364-1374. doi: 10.1038/s41591-020-1034-x
|
[31] |
Act A. Health insurance portability and accountability act of 1996[J]. Public law, 1996, 104: 191. http://www.ehcca.com/presentations/hipaa6/foerster.pdf
|
[32] |
国家卫生健康委员会. 关于印发国家健康医疗大数据标准、安全和服务管理办法(试行)的通知[EB/OL]. (2018-09-14)[2021-06-08]. http://www.nhc.gov.cn/mohwsbwstjxxzx/s8553/201809/f346909ef17e41499ab766890a34bff7.shtml.
|
[33] |
全国人民代表大会. 中华人民共和国数据安全法[EB/OL]. (2021-06-10)[2021-07-02]. http://www.npc.gov.cn/npc/c30834/202106/7c9af12f51334a73b56d7938f99a788a.shtml.
|
[34] |
国务院. 中华人民共和国人类遗传资源管理条列[EB/OL]. (2019-06-10)[2021-07-02]. http://www.gov.cn/zhengce/content/2019-06/10/content_5398829.htm.
|
[35] |
Liang Y, Guo Y, Gong Y, et al. FLBench: A Benchmark Suite for Federated Learning[C]. Intelligent Computing and Block Chain: First BenchCouncil International Federated Conferences, 2020: 166.
|
[36] |
Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records[J]. NPJ Digit Med, 2018, 1: 1-10. doi: 10.1038/s41746-017-0008-y
|
[37] |
Huang Y, Zhang Z, Wang N, et al. A new direction to promote the implementation of artificial intelligence in natural clinical settings[J]. arXiv preprint arXiv: 1905.02940. http://arxiv.org/abs/1905.02940
|
[38] |
Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies[J]. BMJ, 2020, 368: m689. http://www.bmj.com/cgi/content/abstract/368/mar23_22/m689
|
[39] |
Desai AN. Artificial Intelligence: Promise, Pitfalls, and Perspective[J]. JAMA, 2020, 323: 2448-2449. doi: 10.1001/jama.2020.8737
|
[40] |
Parikh RB, Obermeyer Z, Navathe AS. Regulation of predictive analytics in medicine[J]. Science, 2019, 363: 810-812. doi: 10.1126/science.aaw0029
|
[41] |
Chen H, Compton S, Hsiao O. DiabeticLink: A Health Big Data System for Patient Empowerment and Personalized Healthcare[C]. International Conference on Smart Health, 2013: 71-83.
|
[42] |
Abràmoff MD, Lavin PT, Michele B, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[J]. NPJ Digit Med, 2018, 1: 1-8. doi: 10.1038/s41746-017-0008-y
|
[43] |
Wang ZQ, Zhou YJ, Zhao YX, et al. Diagnostic accuracy of a deep learning approach to calculate FFR from coronary CT angiography[J]. J Geriatr Cardiol, 2019, 16: 42-48. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_lnxzbxzz-e201901006
|