留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工智能在脑卒中神经影像中的应用

韩小伟 李茗 张冰

韩小伟, 李茗, 张冰. 人工智能在脑卒中神经影像中的应用[J]. 机械工程学报, 2021, 12(5): 749-754. doi: 10.12290/xhyxzz.2021-0491
引用本文: 韩小伟, 李茗, 张冰. 人工智能在脑卒中神经影像中的应用[J]. 机械工程学报, 2021, 12(5): 749-754. doi: 10.12290/xhyxzz.2021-0491
HAN Xiaowei, LI Ming, ZHANG Bing. Application of Artificial Intelligence in Neuroimaging of Stroke[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 749-754. doi: 10.12290/xhyxzz.2021-0491
Citation: HAN Xiaowei, LI Ming, ZHANG Bing. Application of Artificial Intelligence in Neuroimaging of Stroke[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 749-754. doi: 10.12290/xhyxzz.2021-0491

人工智能在脑卒中神经影像中的应用

doi: 10.12290/xhyxzz.2021-0491
基金项目: 

国家自然科学基金 81720108022

国家自然科学基金 81971596

国家自然科学基金 81701672

江苏省人社厅“六大人才高峰项目”高层次人才 WSN-138

南京市医学科技发展资金 YKK16112

江苏省卫健委“科教强卫”工程医学重点人才 ZDRCA2016064

详细信息
    通讯作者:

    张冰  电话:025-83106666,E-mail:zhangbing_nanjing@nju.edu.cn

  • 中图分类号: R743; R-1

Application of Artificial Intelligence in Neuroimaging of Stroke

Funds: 

National Natural Science Foundation of China 81720108022

National Natural Science Foundation of China 81971596

National Natural Science Foundation of China 81701672

The Project of the "Sixth Peak of Talented People" WSN-138

Nanjing Medical Science and Technology Development Fund YKK16112

Key Medical Talents of the Jiangsu Province, the"13th Five-year"Health Promotion Project of the Jiangsu Province ZDRCA2016064

More Information
  • 摘要: 近年来,人工智能在计算机科学领域快速崛起。医学成像过程中产生了海量图像信息,因此非常适合采用人工智能技术进行相关数据处理。脑卒中患者神经影像在临床诊断、治疗及随访评估中非常关键,人工智能技术在基于脑卒中影像数据的处理和分析中发挥着越来越重要的作用。本文主要回顾人工智能技术在缺血性与出血性脑卒中神经影像应用中的研究进展,重点关注缺血性脑卒中的自动检测、责任脑区缺血状态判断及治疗评估,以及出血性脑卒中的智能诊断、量化分析及治疗评估;同时对基于脑卒中影像智能诊断系统的临床转化应用现状进行分析,探讨当前人工智能在脑卒中神经影像应用过程中存在的主要挑战,并对未来发展前景进行展望。

     

  • [1] Soun JE, Chow DS, Nagamine M, et al. Artificial Intelligence and Acute Stroke Imaging[J]. AJNR Am J Neuroradiol, 2021, 42: 2-11. doi: 10.3174/ajnr.A6883
    [2] Yedavalli VS, Tong E, Martin D, et al. Artificial intelli-gence in stroke imaging: current and future perspectives[J]. Clin Imaging, 2021, 69: 246-254. doi: 10.1016/j.clinimag.2020.09.005
    [3] Patel UK, Anwar A, Saleem S, et al. Artificial intelligence as an emerging technology in the current care of neurological disorders[J]. J Neurol, 2021, 268: 1623-1642. doi: 10.1007/s00415-019-09518-3
    [4] Zhu G, Jiang B, Chen H, et al. Artificial Intelligence and Stroke Imaging: A West Coast Perspective[J]. Neuroimaging Clin N Am, 2020, 30: 479-492. doi: 10.1016/j.nic.2020.07.001
    [5] Herrgårdh T, Madai VI, Kelleher JD, et al. Hybrid modell-ing for stroke care: Review and suggestions of new approa-ches for risk assessment and simulation of scenarios[J]. Neuroimage Clin, 2021, 31: 102694. doi: 10.1016/j.nicl.2021.102694
    [6] Duong MT, Rauschecker AM, Mohan S. Diverse Applications of Artificial Intelligence in Neuroradiology[J]. Neuroimaging Clin N Am, 2020, 30: 505-516. doi: 10.1016/j.nic.2020.07.003
    [7] Kamal H, Lopez V, Sheth SA. Machine Learning in Acute Ischemic Stroke Neuroimaging[J]. Front Neurol, 2018, 9: 945. doi: 10.3389/fneur.2018.00945
    [8] Ho KC, Speier W, El-Saden S, et al. Classifying Acute Ischemic Stroke Onset Time using Deep Imaging Features[J]. AMIA Annu Symp Proc, 2017, 2017: 892-901. http://zerista.s3.amazonaws.com/item_files/3ea6/attachments/405195/original/101217_amia_presentation1.13_kch.pdf
    [9] Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks[J]. Neuroimage Clin, 2017, 15: 633-643. doi: 10.1016/j.nicl.2017.06.016
    [10] Garg R, Oh E, Naidech A, et al. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing[J]. J Stroke Cerebrovasc Dis, 2019, 28: 2045-2051. doi: 10.1016/j.jstrokecerebrovasdis.2019.02.004
    [11] Bouts MJ, Tiebosch IA, van der Toorn A, et al. Early Identification of Potentially Salvageable Tissue with MRI-Based Predictive Algorithms after Experimental Ischemic Stroke[J]. J Cereb Blood Flow Metab, 2013, 33: 1075-1082. doi: 10.1038/jcbfm.2013.51
    [12] Huang S, Shen Q, Duong TQ. Quantitative prediction of acute ischemic tissue fate using support vector machine[J]. Brain Res, 2011, 1405: 77-84. doi: 10.1016/j.brainres.2011.05.066
    [13] Rondina JM, Filippone M, Girolami M, et al. Decoding post-stroke motor function from structural brain imaging[J]. Neuroimage Clin, 2016, 12: 372-380. doi: 10.1016/j.nicl.2016.07.014
    [14] Forkert ND, Verleger T, Cheng B, et al. Multiclass Support Vector Machine-Based Lesion Mapping Predicts Functional Outcome in Ischemic Stroke Patients[J]. PloS One, 2015, 10: e129569. http://europepmc.org/articles/PMC4476759/pdf/pone.0129569.pdf
    [15] Tjoa E, Guan C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI[J]. IEEE Trans Neural Netw Learn Syst, 2020. doi: 10.1109/TNNLS.2020.3027314.
    [16] Zihni E, Madai VI, Livne M, et al. Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome[J]. PLoS One, 2020, 15: e231166. http://www.researchgate.net/publication/340468878_Opening_the_black_box_of_artificial_intelligence_for_clinical_decision_support_A_study_predicting_stroke_outcome
    [17] Bentley P, Ganesalingam J, Carlton Jones AL, et al. Prediction of stroke thrombolysis outcome using CT brain machine learning[J]. Neuroimage Clin, 2014, 4: 635-640. doi: 10.1016/j.nicl.2014.02.003
    [18] Scalzo F, Alger JR, Hu X, et al. Multi-center prediction of hemorrhagic transformation in acute ischemic stroke using permeability imaging features[J]. Magn Reson Imaging, 2013, 31: 961-969. doi: 10.1016/j.mri.2013.03.013
    [19] Zille M, Karuppagounder SS, Chen Y, et al. Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis[J]. Stroke, 2017, 48: 1033-1043. doi: 10.1161/STROKEAHA.116.015609
    [20] Ojaghihaghighi S, Vahdati SS, Mikaeilpour A, et al. Comparison of neurological clinical manifestation in patients with hemorrhagic and ischemic stroke[J]. World J Emerg Med, 2017, 8: 34-38. doi: 10.5847/wjem.j.1920-8642.2017.01.006
    [21] Xu J, Zhang R, Zhou Z, et al. Deep Network for the Automatic Segmentation and Quantification of Intracranial Hemorrhage on CT[J]. Front Neurosci, 2021, 14: 541817. doi: 10.3389/fnins.2020.541817
    [22] Zhao X, Chen K, Wu G, et al. Deep learning shows good reliability for automatic segmentation and volume measurement of brain hemorrhage, intraventricular extension, and peripheral edema[J]. Eur Radiol, 2021, 31: 5012-5020. doi: 10.1007/s00330-020-07558-2
    [23] Ironside N, Chen C, Mutasa S, et al. Fully Automated Segmentation Algorithm for Hematoma Volumetric Analysis in Spontaneous Intracerebral Hemorrhage[J]. Stroke, 2019, 50: 3416-3423. doi: 10.1161/STROKEAHA.119.026561
    [24] Cho J, Park K, Karki M, et al. Improving Sensitivity on Identification and Delineation of Intracranial Hemorrhage Lesion Using Cascaded Deep Learning Models[J]. J Digit Imaging, 2019, 32: 450-461. doi: 10.1007/s10278-018-00172-1
    [25] Kuo W, Häne C, Mukherjee P, et al. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning[J]. Proc Natl Acad Sci U S A, 2019, 116: 22737-22745. doi: 10.1073/pnas.1908021116
    [26] Karthik R, Menaka R, Johnson A, et al. Neuroimaging and deep learning for brain stroke detection - A review of recent advancements and future prospects[J]. Comput Methods Programs Biomed, 2020, 197: 105728. doi: 10.1016/j.cmpb.2020.105728
    [27] Yu Y, Guo D, Lou M, et al. Prediction of Hemorrhagic Transformation Severity in Acute Stroke From Source Perfusion MRI[J]. IEEE Trans Biomed Eng, 2018, 65: 2058-2065. doi: 10.1109/TBME.2017.2783241
    [28] Lin CH, Hsu KC, Johnson KR, et al. Evaluation of machine learning methods to stroke outcome prediction using a nationwide disease registry[J]. Comput Methods Programs Biomed, 2020, 190: 105381. doi: 10.1016/j.cmpb.2020.105381
    [29] Çelik G, Baykan ÖK, Kara Y, et al. Predicting 10-day Mortality in Patients with Strokes Using Neural Networks and Multivariate Statistical Methods[J]. J Stroke Cerebrovasc Dis, 2014, 23: 1506-1512. doi: 10.1016/j.jstrokecerebrovasdis.2013.12.018
    [30] de Jong G, Aquarius R, Sanaan B, et al. Prediction Models in Aneurysmal Subarachnoid Hemorrhage: Forecasting Clinical Outcome With Artificial Intelligence[J]. Neurosurgery, 2021, 88: E427-E434. doi: 10.1093/neuros/nyaa581
    [31] Capoglu S, Savarraj JP, Sheth SA, et al. Representation Learning of 3D Brain Angiograms, an Application for Cerebral Vasospasm Prediction[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 3394-3398. http://www.researchgate.net/publication/336336511_Representation_Learning_of_3D_Brain_Angiograms_an_Application_for_Cerebral_Vasospasm_Prediction
    [32] Ramos LA, van der Steen WE, Sales BR, et al. Machine learning improves prediction of delayed cerebral ischemia in patients with subarachnoid hemorrhage[J]. J Neurointerv Surg, 2019, 11: 497-502. doi: 10.1136/neurintsurg-2018-014258
    [33] Linder SM, Rosenfeldt AB, Reiss A, et al. The Home Stroke Rehabilitation and Monitoring System Trial: A Randomized Controlled Trial[J]. Inter J Stroke, 2013, 8: 46-53. doi: 10.1111/j.1747-4949.2012.00971.x
    [34] 巫嘉陵. 当下有为未来可期: 人工智能与脑血管病[J]. 中国现代神经疾病杂志, 2021, 21: 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJB202101003.htm
    [35] Fu F, Wei J, Zhang M, et al. Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network[J]. Nat Commun, 2020, 11: 4829. doi: 10.1038/s41467-020-18606-2
    [36] Teng L, Ren Q, Zhang P, et al. Artificial Intelligence Can Effectively Predict Early Hematoma Expansion of Intracerebral Hemorrhage Analyzing Noncontrast Computed Tomography Image[J]. Front Aging Neurosci, 2021, 13: 632138. doi: 10.3389/fnagi.2021.632138
    [37] Liu X, Feng J, Wu Z, et al. Deep neural network-based detection and segmentation of intracranial aneurysms on 3D rotational DSA[J]. Interv Neuroradiol, 2021. doi: 10.1177/15910199211000956.
    [38] Quispe-Orozco D, Farooqui M, Zevallos C, et al. Angiography Suite Cone-Beam Computed Tomography Perfusion Imaging in Large-Vessel Occlusion Patients Using RAPID Software: A Pilot Study[J]. Stroke, 2021. doi: 10.1161/STROKEAHA.121.035992.
    [39] Zhu G, Jiang B, Tong L, et al. Applications of Deep Learning to Neuro-Imaging Techniques[J]. Front Neurol, 2019, 10: 869. doi: 10.3389/fneur.2019.00869
    [40] Zaharchuk G, Gong E, Wintermark M, et al. Deep Learning in Neuroradiology[J]. AJNR Am J Neuroradiol, 2018, 39: 1776-1784. doi: 10.3174/ajnr.A5543
    [41] Pesapane F, Volonté C, Codari M, et al. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States[J]. Insights Imaging, 2018, 9: 745-753. doi: 10.1007/s13244-018-0645-y
    [42] Tuladhar A, Gill S, Ismail Z, et al. Building machine learning models without sharing patient data: A simulation-based analysis of distributed learning by ensembling[J]. J Biomed Inform, 2020, 106: 103424. doi: 10.1016/j.jbi.2020.103424
    [43] Kaka H, Zhang E, Khan N. Artificial Intelligence and Deep Learning in Neuroradiology: Exploring the New Frontier[J]. Can Assoc Radiol J, 2021, 72: 35-44. doi: 10.1177/0846537120954293
    [44] Boyd C, Brown G, Kleinig T, et al. Machine Learning Quantitation of Cardiovascular and Cerebrovascular Disease: A Systematic Review of Clinical Applications[J]. Diagnostics (Basel), 2021, 11: 551. doi: 10.3390/diagnostics11030551
  • 加载中
计量
  • 文章访问数:  196
  • HTML全文浏览量:  101
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-23
  • 录用日期:  2021-07-29
  • 网络出版日期:  2021-11-26
  • 发布日期:  2021-08-19
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回