留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人机交互技术在神经系统疾病辅助诊断中的应用:现状与前景

李洋 汪柳萍 黄进 范向民 田丰

李洋, 汪柳萍, 黄进, 范向民, 田丰. 人机交互技术在神经系统疾病辅助诊断中的应用:现状与前景[J]. 机械工程学报, 2021, 12(5): 608-613. doi: 10.12290/xhyxzz.2021-0522
引用本文: 李洋, 汪柳萍, 黄进, 范向民, 田丰. 人机交互技术在神经系统疾病辅助诊断中的应用:现状与前景[J]. 机械工程学报, 2021, 12(5): 608-613. doi: 10.12290/xhyxzz.2021-0522
LI Yang, WANG Liuping, HUANG Jin, FAN Xiangmin, TIAN Feng. Application of Human-Computer Interaction Technology in Ancillary Diagnosis of Nervous System Diseases: Current Situation and Prospect[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 608-613. doi: 10.12290/xhyxzz.2021-0522
Citation: LI Yang, WANG Liuping, HUANG Jin, FAN Xiangmin, TIAN Feng. Application of Human-Computer Interaction Technology in Ancillary Diagnosis of Nervous System Diseases: Current Situation and Prospect[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 12(5): 608-613. doi: 10.12290/xhyxzz.2021-0522

人机交互技术在神经系统疾病辅助诊断中的应用:现状与前景

doi: 10.12290/xhyxzz.2021-0522
详细信息
    通讯作者:

    田丰  电话:010-62661572,E-mail: tianfeng@iscas.ac.cn

  • 中图分类号: R741; R-01; G3

Application of Human-Computer Interaction Technology in Ancillary Diagnosis of Nervous System Diseases: Current Situation and Prospect

More Information
  • 摘要: 随着人机交互技术的发展,如何利用智能、自然、高效的交互方式促进医学的发展,是近年来研究的热点问题。神经系统疾病极大影响了人们的日常生活质量,利用人机交互技术对神经系统疾病进行早期预警与辅助诊断,可在提高患者检查舒适感的同时,减轻医生工作强度,因此具有深远的临床意义。本文通过论述人机交互技术在神经系统疾病辅助诊断中的应用现状、存在问题及发展前景,思考如何利用计算机技术改进传统医学诊断方法。

     

  • 图  常见的笔交互任务

    A. 阿基米德螺旋线[10];B.重复的字母书写[10];C. TMT[11];D.CDT[12]

    图  步态交互分析系统

    A.基于传感器的步态分析系统[23]; B.基于视觉的步态分析系统[25]

    图  典型的生理信号数据采集示意图

    A.脑电图[32];B.肌电图[34]

    表  1  基于人机交互的神经系统疾病辅助诊断技术及其临床应用

    交互模式 设备 交互任务 病理体征 计算特征 诊断疾病
    笔交互[7-12] 触控屏
    电子笔
    笔迹任务:阿基米德螺旋线和重复的字母书写 手部震颤、僵硬、运动迟缓 位移相关
    时间相关
    压力相关
    帕金森病
    绘图任务:TMT和CDT 手部震颤、僵硬、缓慢认知降低 位移相关
    压力相关
    时间相关
    错误相关
    图形比例相关
    图形角度相关
    目标识别
    帕金森病
    轻度创伤性脑损伤
    多发性硬化症
    双相情感障碍
    阿尔茨海默病
    轻度认知障碍
    血管性认知障碍
    语音交互[16-21] 麦克风 连续性语句 呼吸节奏、共振协调性、发音和韵律改变 语音识别相关
    能量谱相关
    帕金森病
    小脑共济失调
    肌萎缩侧索硬化
    阿尔茨海默病
    认知能力衰退
    持续元音发音 震动不规律、噪音、嘶哑 声带震动相关
    噪音相关
    发音器官相关
    帕金森病
    多系统萎缩
    功能性神经障碍
    颈部肌张力障碍
    原发性震颤
    全身性阵发性肌张力障碍
    步态交互[23-24, 26-28] 传感器
    摄像头
    指令站立与行走测试 小碎步、冻结步态、平衡能力下降 位移相关
    时间相关
    角度相关
    小脑共济失调
    帕金森病
    脑卒中
    脑瘫
    生理计算[30-32, 34-35] 脑电图
    肌电图
    脑电图:无特定任务和视觉注意力任务 脑电波信号异常 相位振幅波形相关
    频域相关非线性动力学特征理论
    混沌理论
    缺血性脑卒中
    癫痫
    多发性硬化症
    肌电图:肘屈曲 肌肉电信号异常 相位相关
    振幅相关
    帕金森病
    下载: 导出CSV
  • [1] Card SK, Moran TP, Newell A. The Psychology of Human-Computer Interaction[J]. Am J Psychol, 1983. doi: 10.2307/1422176.
    [2] Grammatikopoulou A, Grammalidis N, Bostantjopoulou S, et al. Detecting hypomimia symptoms by selfie photo analysis: for early Parkinson disease detection[C]. Pervasive Technologies Related to Assistive Environments, 2019: 517-522.
    [3] Gordon ML, Gatys LA, Guestrin C, et al. App Usage Predicts Cognitive Ability in Older Adults[C]. Human Factors in Computing Systems, 2019, 168: 1-12.
    [4] Aoe J, Fukuma R, Yanagisawa T, et al. Automatic diagnosis of neurological diseases using MEG signals with a deep neural network[J]. Sci Rep, 2019, 9: 5057. doi: 10.1038/s41598-019-41500-x
    [5] Chiuchisan I, Chiuchisan I, Geman O, et al. Tremor Measurement System for Neurological Disorders Screening[J]. Springer Cham, 2016, 633: 339-348. http://www.eed.usv.ro/idei_48/articles/SOFA_2016_paper2.pdf
    [6] Impedovo D, Pirlo G, Vessio G, et al. A Handwriting-Based Protocol for Assessing Neurodegenerative Dementia[J]. Cogn Comput, 2019, 11: 576-586. doi: 10.1007/s12559-019-09642-2
    [7] Smits EJ, Tolonen A, Cluitmans L, et al. Standardized handwriting to assess bradykinesia, micrographia and tremor in Parkinson's disease[J]. PLoS One, 2014, 9: e97614. doi: 10.1371/journal.pone.0097614
    [8] Fellows RP, Dahmen J, Cook D, et al. Multicomponent analysis of a digital Trail Making Test[J]. Clin Neuropsychol, 2017, 31: 154-167. doi: 10.1080/13854046.2016.1238510
    [9] Harbi, Zainab. Automatic interpretation of clock drawings for computerised assessment of dementia[D]. Wales: Cardiff University, 2017.
    [10] Drotár P, Mekyska J, Rektorová I, et al. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease[J]. Artif Intell Med, 2016, 67: 39-46. doi: 10.1016/j.artmed.2016.01.004
    [11] Dahmen J, Cook D, Fellows R, et al. An analysis of a digital variant of the Trail Making Test using machine learning techniques[J]. Technol Health Care, 2017, 25: 251-264. doi: 10.3233/thc-161274
    [12] Souillard-Mandar W, Davis R, Rudin C, et al. Learning classification models of cognitive conditions from subtle behaviors in the digital Clock Drawing Test[J]. Mach Learn, 2016, 102: 393-441. doi: 10.1007/s10994-015-5529-5
    [13] Hirano M. Psycho-Acoustic Evaluation of Voice[J]. Clin Exam Voice, 1981. http://ci.nii.ac.jp/naid/10011685687
    [14] Baken RJ, Orlikoff RF. Clinical Measurement of Speech and Voice[M]. San Diego: Singular Thomson Learning, 2000.
    [15] Mekyska J, Janousova E, Gomez-Vilda P, et al. Robust and complex approach of pathological speech signal analysis[J]. Neurocomputing, 2015, 167: 94-111. doi: 10.1016/j.neucom.2015.02.085
    [16] Laaridh I, Kheder WB, Fredouille C, et al. Automatic Prediction of Speech Evaluation Metrics for Dysarthric Speech[C]. Interspeech, 2017: 1363-1366.
    [17] Kodrasi I, Bourlard H. Super-gaussianity of Speech Spectral Coefficients as a Potential Biomarker for Dysarthric Speech Detection[C]. ICASSP, 2019: 6400-6404.
    [18] Weiner J, Herff C, Schultz T. Speech-Based Detection of Alzheimer's Disease in Conversational German[C]. Interspeech, 2016: 1938-1942.
    [19] Tsanas A, Little MA, Mcsharry PE, et al. Novel Speech Signal Processing Algorithms for High-Accuracy Classifica-tion of Parkinson's Disease[J]. IEEE Trans Biomed Eng, 2012, 59: 1264-1271. doi: 10.1109/TBME.2012.2183367
    [20] Benba A, Jilbab A, Hammouch A. Voice assessments for detecting patients with neurological diseases using PCA and NPCA[J]. Inter J Speech Technol, 2017, 20: 673-683. doi: 10.1007/s10772-017-9438-9
    [21] Berus L, Klancnik S, Brezocnik M, et al. Classifying Parkinson's Disease Based on Acoustic Measures Using Artificial Neural Networks[J]. Sensors (Basel), 2018, 19: 16. doi: 10.3390/s19010016
    [22] Prakash C, Kumar R, Mittal N. Recent developments in human gait research: parameters, approaches, applications, machine learning techniques, datasets and challenges[J]. Art Int Rev, 2016, 49: 1-40. doi: 10.1007/s10462-016-9514-6
    [23] Martelli D, Aprigliano F, Agrawal SK. Gait Adjustments Against Multidirectional Waist-Pulls in Cerebellar Ataxia and Parkinson's Disease[J]. Bio Sys Rob, 2019, 21: 283-286.
    [24] 吴壮, 仲敏, 蒋旭, 等. 不同临床分期帕金森病患者的步态分析[J]. 临床神经病学杂志, 2021, 34: 169-172. doi: 10.3969/j.issn.1004-1648.2021.03.003

    Wu Z, Zhong M, Jiang X, et al. Gait analysis of patients with different stages Parkinson's disease[J]. Linchuang Shenjingbingxue Zazhi, 2021, 34: 169-172 doi: 10.3969/j.issn.1004-1648.2021.03.003
    [25] Pavone L, Pasqua G, Ricciuti P, et al. A Kinect-Based Portable Automatic Gait Analysis System-An Experimental Validation[J]. Biom J Sci Tech Res, 2019, 17: 12552-12555. http://www.researchgate.net/publication/335541156_A_Kinect-Based_Portable_Automatic_Gait_Analysis_System_An_Experimental_Validation
    [26] Yoneyama M, Kurihara Y, Watanabe K, et al. Accelerometry-based gait analysis and its application to Parkinson's disease assessment- part 2: a new measure for quantifying walking behavior[J]. IEEE Trans Neural Syst Rehabil Eng, 2013, 21: 999-1005. doi: 10.1109/TNSRE.2013.2268251
    [27] Latorre J, Llorens R, Colomer C, et al. Reliability and comparison of Kinect-based methods for estimating spatiotem-poral gait parameters of healthy and post-stroke individuals[J]. J Biomech, 2018, 72: 268-273. doi: 10.1016/j.jbiomech.2018.03.008
    [28] Ma Y, Mithraratne K, Wilson N, et al. The Validity and Reliability of a Kinect v2-Based Gait Analysis System for Children with Cerebral Palsy[J]. Sensors (Basel), 2019, 19: 1660-1676. doi: 10.3390/s19071660
    [29] Chakraborty S, Nandy A. Automatic Diagnosis of Cerebral Palsy Gait Using Computational Intelligence Techniques: A Low-Cost Multi-Sensor Approach[J]. IEEE Trans Neural Syst Rehabil Eng, 2020, 28: 2488-2496. . doi: 10.1109/TNSRE.2020.3028203
    [30] Jordan KG. Emergency EEG and continuous EEG monitoring in acute ischemic stroke[J]. J Clin Neurophysiol, 2004, 21: 341-352. http://europepmc.org/abstract/MED/15592008
    [31] Faust O, Acharya UR, Adeli H, et al. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis[J]. Inter J Eng Res Appl, 2015, 26: 56-64.
    [32] Ahmadi A, Davoudi S, Daliri MR. Computer Aided Diagnosis System for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention[J]. Comput Methods Programs Biomed, 2019, 169: 9-18. doi: 10.1016/j.cmpb.2018.11.006
    [33] Zwarts MJ, Drost G, Stegeman DF. Recent progress in the diagnostic use of surface EMG for neurological diseases[J]. J Electromyogr Kinesiol, 2000, 10: 287-291. doi: 10.1016/S1050-6411(00)00020-1
    [34] Robichaud JA, Pfann KD, Leurgans S, et al. Variability of EMG patterns: a potential neurophysiological marker of Parkinson's disease?[J]. Clin Neurophysiol, 2009, 120: 390-397. doi: 10.1016/j.clinph.2008.10.015
    [35] Das T, Ghosh A, Guha S, et al. Classification of EEG Signals for Prediction of Seizure using Multi-Feature Extraction[C]. International Conference on Electronics, 2017: 1-4.
    [36] 李洋, 黄进, 田丰, 等. 云端融合的神经系统疾病多通道辅助诊断研究[J]. 中国科学(信息科学), 2017, 47: 1164-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201709004.htm

    Li Y, Huang J, Tian F, et al. Research on the multi-modal aided neurological disease diagnosis with synergy of cloud and client[J]. Zhongguo Kexue(Xinxi Kexue), 2017, 47: 1164-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201709004.htm
    [37] Hsu C, Liu Y, Zachary K, et al. Extracting Gait Velocity and Stride Length from Surrounding Radio Signals[C]. CHI Conference on Human Factors in Computing Systems, 2017: 2116-2126.
    [38] Cirillo D, Catuara-Solarz S, Morey C, et al. Sex and gender differences and biases in artificial intelligence for biomedi-cine and healthcare[J]. NPJ Digit Med, 2020, 3: 81. doi: 10.1038/s41746-020-0288-5
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  226
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-09
  • 录用日期:  2021-08-30
  • 网络出版日期:  2021-11-26
  • 发布日期:  2021-09-15
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回