Effect of Heat Treatment on the Interaction Mechanism and Digestibility of Soybean Protein Isolate-Curcumin
-
摘要: 为了探究热处理对大豆分离蛋白-姜黄素复合物结构和互作机理的影响,研究了不同热处理温度(75、80、85、90、95 ℃)下大豆分离蛋白对姜黄素的包埋率以及其复合物粒径、电位、二级结构、三级结构,及其在体外消化率的变化。结果表明,85 ℃条件下热处理有利于大豆蛋白与姜黄素结合,形成稳定的复合物,包埋率达89.13%。此时液滴粒径大小为163.33 nm,电位值为−24.30 mV,总巯基和表面疏水性达到最大值分别为3.82 μmol/g和3814±20,此时蛋白结构最为舒展,体系最稳定,有利于提高体外模拟消化释放率。该实验结果证明热处理可提高大豆蛋白与姜黄素的结合,有利于后续对大豆蛋白、姜黄素复合物的创新和开发。Abstract: The effects of different heat treatment temperatures (75, 80, 85, 90, 95 ℃) on the embedding rate, particle size, zeta, secondary structure, tertiary structure and its digestibility in vitro of soybean protein isolate-curcumin complexes were studied in order to explore the structure and interaction mechanism of complexes. The results showed that heat treatment at 85 ℃ was the best to combine soybean protein isolate with curcumin. Meanwhile, the embedding rate reached 89.13%, the particle size was 163.33 nm, and the potential value was −24.30 mV. The total sulfhydryl group and surface hydrophobicity of complex reached the maximum, 3.82 μmol/g and 3814±20, which indicated that the protein structure was stretch to stable and interact with curcumin to improve the digestibility in vitro. It was also concluded that the binding effect of soybean protein isolate and curcumin was enhanced by heat treatment. The result would be beneficial to the innovation and development of soybean protein isolate and curcumin complex.
-
Key words:
- soybean protein isolate /
- curcumin /
- heat treatment /
- interaction /
- digestive property
-
表 1 不同热处理温度下SPI对Cur的包埋率(EE)和包埋量(EA)
Table 1. The EE and EA of SPI to Cur at different heat treatment temperatures
指标 未处理 75 ℃ 80 ℃ 85 ℃ 90 ℃ 95 ℃ 包埋率EE(%) 78.60±0.30 82.80±0.12 84.30±0.16 89.13±0.22 88.05±0.18 86.60±0.10 包埋量EA(μg/mg SPI) 2.94±0.10 3.31±0.20 3.37±0.20 3.56±0.10 3.52±0.10 3.32±0.20 表 2 不同热处理温度下SPI-Cur复合物的粒径和电位
Table 2. Particle size and Zeta potential of SPI-Cur complex at different heat treatment temperatures
组别 Dz(nm) PDI ζ-电势(mV) 未处理 73.00±1.75 0.326±0.031 −20.70±2.06 75 ℃ 110.32±3.81 0.308±0.073 −23.10±3.44 80 ℃ 130.67±5.24 0.223±0.040 −23.80±2.23 85 ℃ 163.33±1.66 0.203±0.031 −24.30±1.91 90 ℃ 166.10±3.61 0.478±0.098 −17.50±4.29 95 ℃ 223.23±6.02 0.497±0.039 −18.10±1.71 表 3 不同热处理温度下复合物蛋白质二级结构组成
Table 3. Secondary structure content of protein of complex at different heat treatment temperatures
样品 α-螺旋(%) β-折叠(%) β-转角(%) 无规则卷曲(%) SPI 17.43±0.23b 48.98±0.23a 15.50±0.23c 18.10±0.23b 未处理SPI-Cur 19.70±0.23d 51.56±0.23c 13.33±0.23a 16.42±0.23a SPI-Cur 75 ℃ 18.85±0.23cd 51.07±0.23c 13.86±0.23a 16.22±0.23a SPI-Cur 80 ℃ 19.03±0.23d 50.86±0.23b 13.39±0.23a 16.72±0.23ab SPI-Cur 85 ℃ 18.27±0.23c 49.14±0.23a 13.88±0.23a 16.70±0.23ab SPI-Cur 90 ℃ 17.61±0.23b 50.05±0.23b 13.97±0.23ab 18.37±0.23c SPI-Cur 95 ℃ 16.19±0.23a 48.39±0.23a 14.46±0.23b 20.99±0.23d 注:同列不同小写字母表示差异显著(P<0.05)。 表 4 SPI-Cur复合物模拟体外消化中姜黄素的释放率(%)
Table 4. Release rates of digested curcumin of the SPI-Cur complex in vitro (%)
阶段 时间(min) 未处理 75 ℃ 80 ℃ 85 ℃ 90 ℃ 95 ℃ 胃消化 0 − − − − − − 30 24.45±0.12 23.70±0.30 18.30±0.16 17.13±0.12 17.05±0.18 17.60±0.10 肠消化 60 25.98±0.20 25.84±0.12 27.30±0.20 23.74±0.25 20.25±0.10 22.70±0.20 90 28.12±0.34 28.35±0.42 32.30±0.34 30.65±0.22 26.37±0.20 25.64±0.15 120 29.04±0.23 29.86±0.21 34.14±0.18 37.12±0.24 31.85±0.35 30.64±0.34 150 30.22±0.11 31.94±0.10 36.57±0.20 39.56±0.10 34.52±0.15 35.32±0.20 -
[1] TENG Zi, LUO Yangchao, WANG Qin. Nanoparticles synthesized from soy protein: Preparation, characterization, and application for nutraceutical encapsulation[J]. Journal of Agricultural and Food Chemistry,2012,60(10):2712−2720. doi: 10.1021/jf205238x [2] DENG Xixiang, CHEN Zhong, HUANG Qiang, et al. Spray-drying microencapsulation of β-carotene by soy protein isolate and/or OSA-modified starch[J]. Journal of Applied Polymer Science,2014,131(12):157−165. [3] NOSHAD M, MOHEBBI M, KOOCHEKI A, et al. Microencapsulation of vanillin by spray drying using soy protein isolate–maltodextrin as wall material[J]. Flavour and Fragrance Journal,2015,30(5):387−391. doi: 10.1002/ffj.3253 [4] MAHESHWARI R K, SINGH A K, GADDIPATI J, et al. Multiple biological activities of curcumin: A short review[J]. Life Sciences,2006,78(18):2081−2087. doi: 10.1016/j.lfs.2005.12.007 [5] HEWLINGS S J, KALMAN D S. Curcumin: A review of its’ effects on human health[J]. Foods,2017,6:92. doi: 10.3390/foods6100092 [6] CHEN Feiping, LI Bianshen, TANG Chuanhe. Nanocomplexation of soy protein isolate with curcumin: Influence of ultrasonic treatment[J]. Food Research International,2015,75:157−165. doi: 10.1016/j.foodres.2015.06.009 [7] SHARMA R A, MCLELLAND H R, HILL K A, et al. Pharmacodynamic and pharmacokinetic study of oral curcuma extract in patients with colorectal cancer[J]. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research,2001,7(7):223−230. [8] RICHE M, WILLIAMS T N. Apparent digestible protein, energy and amino acid availability of three plant proteins in Florida pompano, Trachinotus carolinus L. in seawater and low-salinity water[J]. Aquaculture Nutrition,2010,16(3):223−230. [9] BAO Xiaolan, SONG Mei, ZHANG Jing, et al. Calcium-binding ability of soy protein hydrolysates[J]. Chinese Chemical Letters,2007,18(9):1115−1118. doi: 10.1016/j.cclet.2007.07.032 [10] TAPAL A, TIKU P K. Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin[J]. Food Chemistry,2012,130(4):960−965. doi: 10.1016/j.foodchem.2011.08.025 [11] ZHANG Yuanhong, ZHAO Mouming, NING Zhengxiang, et al. Development of a sono-assembled, bifunctional soy peptide nanoparticle for cellular delivery of hydrophobic active cargoes[J]. Journal of Agricultural and Food Chemistry,2018,66(16):4208−4218. doi: 10.1021/acs.jafc.7b05889 [12] BELICIU C M, MORARU C I. The effect of protein concentration and heat treatment temperature on micellar casein-soy protein mixtures[J]. Food Hydrocolloids,2011,25(6):1448−1460. doi: 10.1016/j.foodhyd.2011.01.011 [13] LIU Fu, TANG Chuanhe. Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions[J]. Journal of Agricultural and Food Chemistry,2013,61(37):8888−8898. doi: 10.1021/jf401859y [14] MANEEPHAN K U R, MILENA C. Effect of dynamic high pressure homogenization on the aggregation state of soy protein[J]. Journal of Agricultural and Food Chemistry,2009,57(9):3556−3562. doi: 10.1021/jf803562q [15] TANG Chuanhe, MA Chingyung. Heat-induced modifications in the functional and structural properties of vicilin-rich protein isolate from kidney (Phaseolus vulgaris L.) bean[J]. Food Chemistry,2008,115(3):859−866. [16] 陈飞平. 大豆蛋白作为姜黄素纳米输送载体的途径及机理[D]. 广州: 华南理工大学, 2017.CHEN Feiping. The pathway and mechanism of soybean protein as a nano-carrier of curcumin[D]. Guangzhou: South China University of Technology, 2017. [17] 黄利华, 黎海彬, 彭述辉, 等. 微射流和超声波对长期贮藏大豆分离蛋白溶解性的影响[J]. 食品工业科技,2013,34(3):104−107. [HUANG Lihua, LI Haibin, PENG Shuhui, et al. Effects of micro-jet and ultrasound on solubility of soybean protein isolate during long-term storage[J]. Technology in the Food Industry,2013,34(3):104−107. doi: 10.13386/j.issn1002-0306.2013.03.034 [18] 丁俭, 隋晓楠, 王婧, 等. 超声处理大豆分离蛋白与壳聚糖复合物对O/W型乳液稳定性的影响[J]. 食品科学,2018,39(13):74−80. [DING Jian, SUI Xiaonan, WANG Jing, et al. Effect of ultrasonic treatment on the stability of O/W emulsion[J]. Food Science,2018,39(13):74−80. [19] 江萍. 基于Caco-2细胞模型的乳清蛋白纳米载体提高姜黄素吸收率的研究[D]. 北京: 北京化工大学, 2018.JIANG Ping. Study on enhancement of curcumin absorption by whey protein nanocarriers based on Caco-2 cell model[D]. Beijing: Beijing University of Chemical Technology, 2018. [20] ELLMAN G L. Tissue sulfhydryl groups[J]. Archives of Biochemistry and Biophysics,1959,82(1):70−77. doi: 10.1016/0003-9861(59)90090-6 [21] TANG Chuanhe, CHOI Siumei, MA Chingyung. Study of thermal properties and heat-induced denaturation and aggregation of soy proteins by modulated differential scanning calorimetry[J]. International Journal of Biological Macromolecules,2006,40(2):96−104. [22] WANG Jinmei, XIA Ning, YANG Xiaoquan, et al. Adsorption and dilatational rheology of heat-treated soy protein at the oil-water interface: Relationship to structural properties[J]. Journal of Agricultural and Food Chemistry,2012,60(12):3302−3310. [23] JACKSON M, MANTSCH H H. The use and misuse of FTIR spectroscopy in the determination of protein structure[J]. Critical Reviews in Biochemistry and Molecular Biology,2008,30(2):95−120. [24] SCHMIDT V, GIACOMELLI C, SOLDI V. Thermal stability of films formed by soy protein isolate–sodium dodecyl sulfate[J]. Polymer Degradation and Stability,2004,87(1):25−31. [25] LIU Yujia, YING Danyang, CAI Yanxue, et al. Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization[J]. Food Hydrocolloids,2017,72:304−311. doi: 10.1016/j.foodhyd.2017.06.007 [26] 袁丹, 赵谋明, 张思锐, 等. 酸热诱导大豆分离蛋白纳米颗粒形成及其荷载姜黄素的特性[J]. 食品科学,2020,41(14):1−8. [YUAN Dan, ZHAO Mouming, ZHANG Sirui, et al. Acid-heat induced formation of soy protein isolate nanoparticles and its curcumin-loaded properties[J]. Food Science,2020,41(14):1−8. doi: 10.7506/spkx1002-6630-20190526-314