留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理对大豆分离蛋白-姜黄素互作机理及消化特性的影响

朱颖 黄雨洋 刘琳琳 吕铭守 孙冰玉 朱秀清

朱颖,黄雨洋,刘琳琳,等. 热处理对大豆分离蛋白-姜黄素互作机理及消化特性的影响[J]. 食品工业科技,2023,44(9):53−59. doi: 10.13386/j.issn1002-0306.2022030297
引用本文: 朱颖,黄雨洋,刘琳琳,等. 热处理对大豆分离蛋白-姜黄素互作机理及消化特性的影响[J]. 食品工业科技,2023,44(9):53−59. doi: 10.13386/j.issn1002-0306.2022030297
ZHU Ying, HUANG Yuyang, LIU Linlin, et al. Effect of Heat Treatment on the Interaction Mechanism and Digestibility of Soybean Protein Isolate-Curcumin[J]. Science and Technology of Food Industry, 2023, 44(9): 53−59. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030297
Citation: ZHU Ying, HUANG Yuyang, LIU Linlin, et al. Effect of Heat Treatment on the Interaction Mechanism and Digestibility of Soybean Protein Isolate-Curcumin[J]. Science and Technology of Food Industry, 2023, 44(9): 53−59. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030297

热处理对大豆分离蛋白-姜黄素互作机理及消化特性的影响

doi: 10.13386/j.issn1002-0306.2022030297
基金项目: 哈尔滨商业大学“青年创新人才”项目(2020CX40)。
详细信息
    作者简介:

    朱颖(1992−)(ORCID:0000−0002−9255−5205),女,博士,讲师,研究方向:植物蛋白加工与利用,E-mail:13258512068@163.com

    通讯作者:

    朱秀清(1968−) (ORCID:0000−0001−7825−1449),女,硕士,教授,研究方向:蛋白质分子化学及大豆深加工,E-mail:xqzhuwang@163.com

  • 中图分类号: TS214.2

Effect of Heat Treatment on the Interaction Mechanism and Digestibility of Soybean Protein Isolate-Curcumin

  • 摘要: 为了探究热处理对大豆分离蛋白-姜黄素复合物结构和互作机理的影响,研究了不同热处理温度(75、80、85、90、95 ℃)下大豆分离蛋白对姜黄素的包埋率以及其复合物粒径、电位、二级结构、三级结构,及其在体外消化率的变化。结果表明,85 ℃条件下热处理有利于大豆蛋白与姜黄素结合,形成稳定的复合物,包埋率达89.13%。此时液滴粒径大小为163.33 nm,电位值为−24.30 mV,总巯基和表面疏水性达到最大值分别为3.82 μmol/g和3814±20,此时蛋白结构最为舒展,体系最稳定,有利于提高体外模拟消化释放率。该实验结果证明热处理可提高大豆蛋白与姜黄素的结合,有利于后续对大豆蛋白、姜黄素复合物的创新和开发。

     

  • 图  不同热处理温度下SPI-Cur复合物的表面疏水性

    Figure  1.  Surface hydrophobicity of SPI-Cur complex at different heat treatment temperatures

    图  不同热处理温度下SPI-Cur复合物的红外光谱谱图

    Figure  2.  FT-IR spectroscopy of SPI-Cur complex at different heat treatment temperatures

    图  不同热处理温度对复合物巯基含量的影响

    Figure  3.  Effect of different heat treatment temperatures on the sulfhydryl content of the complex

    图  SPI-Cur复合物消化过程中粒径的变化

    Figure  4.  Changes in particle size during digestion of the SPI-Cur complex

    图  SPI-Cur复合物消化物的SDS-PAGE电泳图

    Figure  5.  SDS-PAGE during digestion of the SPI-Cur complex

    表  1  不同热处理温度下SPI对Cur的包埋率(EE)和包埋量(EA)

    Table  1.   The EE and EA of SPI to Cur at different heat treatment temperatures

    指标未处理75 ℃80 ℃85 ℃90 ℃95 ℃
    包埋率EE(%)78.60±0.3082.80±0.1284.30±0.1689.13±0.2288.05±0.1886.60±0.10
    包埋量EA(μg/mg SPI)2.94±0.103.31±0.203.37±0.203.56±0.103.52±0.103.32±0.20
    下载: 导出CSV

    表  2  不同热处理温度下SPI-Cur复合物的粒径和电位

    Table  2.   Particle size and Zeta potential of SPI-Cur complex at different heat treatment temperatures

    组别Dz(nm)PDIζ-电势(mV)
    未处理73.00±1.750.326±0.031−20.70±2.06
    75 ℃110.32±3.810.308±0.073−23.10±3.44
    80 ℃130.67±5.240.223±0.040−23.80±2.23
    85 ℃163.33±1.660.203±0.031−24.30±1.91
    90 ℃166.10±3.610.478±0.098−17.50±4.29
    95 ℃223.23±6.020.497±0.039−18.10±1.71
    下载: 导出CSV

    表  3  不同热处理温度下复合物蛋白质二级结构组成

    Table  3.   Secondary structure content of protein of complex at different heat treatment temperatures

    样品α-螺旋(%)β-折叠(%)β-转角(%)无规则卷曲(%)
    SPI17.43±0.23b48.98±0.23a15.50±0.23c18.10±0.23b
    未处理SPI-Cur19.70±0.23d51.56±0.23c13.33±0.23a16.42±0.23a
    SPI-Cur 75 ℃18.85±0.23cd51.07±0.23c13.86±0.23a16.22±0.23a
    SPI-Cur 80 ℃19.03±0.23d50.86±0.23b13.39±0.23a16.72±0.23ab
    SPI-Cur 85 ℃18.27±0.23c49.14±0.23a13.88±0.23a16.70±0.23ab
    SPI-Cur 90 ℃17.61±0.23b50.05±0.23b13.97±0.23ab18.37±0.23c
    SPI-Cur 95 ℃16.19±0.23a48.39±0.23a14.46±0.23b20.99±0.23d
    注:同列不同小写字母表示差异显著(P<0.05)。
    下载: 导出CSV

    表  4  SPI-Cur复合物模拟体外消化中姜黄素的释放率(%)

    Table  4.   Release rates of digested curcumin of the SPI-Cur complex in vitro (%)

    阶段时间(min)未处理75 ℃80 ℃85 ℃90 ℃95 ℃
    胃消化0
    3024.45±0.1223.70±0.3018.30±0.1617.13±0.1217.05±0.1817.60±0.10
    肠消化6025.98±0.2025.84±0.1227.30±0.2023.74±0.2520.25±0.1022.70±0.20
    9028.12±0.3428.35±0.4232.30±0.3430.65±0.2226.37±0.2025.64±0.15
    12029.04±0.2329.86±0.2134.14±0.1837.12±0.2431.85±0.3530.64±0.34
    15030.22±0.1131.94±0.1036.57±0.2039.56±0.1034.52±0.1535.32±0.20
    下载: 导出CSV
  • [1] TENG Zi, LUO Yangchao, WANG Qin. Nanoparticles synthesized from soy protein: Preparation, characterization, and application for nutraceutical encapsulation[J]. Journal of Agricultural and Food Chemistry,2012,60(10):2712−2720. doi: 10.1021/jf205238x
    [2] DENG Xixiang, CHEN Zhong, HUANG Qiang, et al. Spray-drying microencapsulation of β-carotene by soy protein isolate and/or OSA-modified starch[J]. Journal of Applied Polymer Science,2014,131(12):157−165.
    [3] NOSHAD M, MOHEBBI M, KOOCHEKI A, et al. Microencapsulation of vanillin by spray drying using soy protein isolate–maltodextrin as wall material[J]. Flavour and Fragrance Journal,2015,30(5):387−391. doi: 10.1002/ffj.3253
    [4] MAHESHWARI R K, SINGH A K, GADDIPATI J, et al. Multiple biological activities of curcumin: A short review[J]. Life Sciences,2006,78(18):2081−2087. doi: 10.1016/j.lfs.2005.12.007
    [5] HEWLINGS S J, KALMAN D S. Curcumin: A review of its’ effects on human health[J]. Foods,2017,6:92. doi: 10.3390/foods6100092
    [6] CHEN Feiping, LI Bianshen, TANG Chuanhe. Nanocomplexation of soy protein isolate with curcumin: Influence of ultrasonic treatment[J]. Food Research International,2015,75:157−165. doi: 10.1016/j.foodres.2015.06.009
    [7] SHARMA R A, MCLELLAND H R, HILL K A, et al. Pharmacodynamic and pharmacokinetic study of oral curcuma extract in patients with colorectal cancer[J]. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research,2001,7(7):223−230.
    [8] RICHE M, WILLIAMS T N. Apparent digestible protein, energy and amino acid availability of three plant proteins in Florida pompano, Trachinotus carolinus L. in seawater and low-salinity water[J]. Aquaculture Nutrition,2010,16(3):223−230.
    [9] BAO Xiaolan, SONG Mei, ZHANG Jing, et al. Calcium-binding ability of soy protein hydrolysates[J]. Chinese Chemical Letters,2007,18(9):1115−1118. doi: 10.1016/j.cclet.2007.07.032
    [10] TAPAL A, TIKU P K. Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin[J]. Food Chemistry,2012,130(4):960−965. doi: 10.1016/j.foodchem.2011.08.025
    [11] ZHANG Yuanhong, ZHAO Mouming, NING Zhengxiang, et al. Development of a sono-assembled, bifunctional soy peptide nanoparticle for cellular delivery of hydrophobic active cargoes[J]. Journal of Agricultural and Food Chemistry,2018,66(16):4208−4218. doi: 10.1021/acs.jafc.7b05889
    [12] BELICIU C M, MORARU C I. The effect of protein concentration and heat treatment temperature on micellar casein-soy protein mixtures[J]. Food Hydrocolloids,2011,25(6):1448−1460. doi: 10.1016/j.foodhyd.2011.01.011
    [13] LIU Fu, TANG Chuanhe. Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions[J]. Journal of Agricultural and Food Chemistry,2013,61(37):8888−8898. doi: 10.1021/jf401859y
    [14] MANEEPHAN K U R, MILENA C. Effect of dynamic high pressure homogenization on the aggregation state of soy protein[J]. Journal of Agricultural and Food Chemistry,2009,57(9):3556−3562. doi: 10.1021/jf803562q
    [15] TANG Chuanhe, MA Chingyung. Heat-induced modifications in the functional and structural properties of vicilin-rich protein isolate from kidney (Phaseolus vulgaris L.) bean[J]. Food Chemistry,2008,115(3):859−866.
    [16] 陈飞平. 大豆蛋白作为姜黄素纳米输送载体的途径及机理[D]. 广州: 华南理工大学, 2017.

    CHEN Feiping. The pathway and mechanism of soybean protein as a nano-carrier of curcumin[D]. Guangzhou: South China University of Technology, 2017.
    [17] 黄利华, 黎海彬, 彭述辉, 等. 微射流和超声波对长期贮藏大豆分离蛋白溶解性的影响[J]. 食品工业科技,2013,34(3):104−107. [HUANG Lihua, LI Haibin, PENG Shuhui, et al. Effects of micro-jet and ultrasound on solubility of soybean protein isolate during long-term storage[J]. Technology in the Food Industry,2013,34(3):104−107. doi: 10.13386/j.issn1002-0306.2013.03.034
    [18] 丁俭, 隋晓楠, 王婧, 等. 超声处理大豆分离蛋白与壳聚糖复合物对O/W型乳液稳定性的影响[J]. 食品科学,2018,39(13):74−80. [DING Jian, SUI Xiaonan, WANG Jing, et al. Effect of ultrasonic treatment on the stability of O/W emulsion[J]. Food Science,2018,39(13):74−80.
    [19] 江萍. 基于Caco-2细胞模型的乳清蛋白纳米载体提高姜黄素吸收率的研究[D]. 北京: 北京化工大学, 2018.

    JIANG Ping. Study on enhancement of curcumin absorption by whey protein nanocarriers based on Caco-2 cell model[D]. Beijing: Beijing University of Chemical Technology, 2018.
    [20] ELLMAN G L. Tissue sulfhydryl groups[J]. Archives of Biochemistry and Biophysics,1959,82(1):70−77. doi: 10.1016/0003-9861(59)90090-6
    [21] TANG Chuanhe, CHOI Siumei, MA Chingyung. Study of thermal properties and heat-induced denaturation and aggregation of soy proteins by modulated differential scanning calorimetry[J]. International Journal of Biological Macromolecules,2006,40(2):96−104.
    [22] WANG Jinmei, XIA Ning, YANG Xiaoquan, et al. Adsorption and dilatational rheology of heat-treated soy protein at the oil-water interface: Relationship to structural properties[J]. Journal of Agricultural and Food Chemistry,2012,60(12):3302−3310.
    [23] JACKSON M, MANTSCH H H. The use and misuse of FTIR spectroscopy in the determination of protein structure[J]. Critical Reviews in Biochemistry and Molecular Biology,2008,30(2):95−120.
    [24] SCHMIDT V, GIACOMELLI C, SOLDI V. Thermal stability of films formed by soy protein isolate–sodium dodecyl sulfate[J]. Polymer Degradation and Stability,2004,87(1):25−31.
    [25] LIU Yujia, YING Danyang, CAI Yanxue, et al. Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization[J]. Food Hydrocolloids,2017,72:304−311. doi: 10.1016/j.foodhyd.2017.06.007
    [26] 袁丹, 赵谋明, 张思锐, 等. 酸热诱导大豆分离蛋白纳米颗粒形成及其荷载姜黄素的特性[J]. 食品科学,2020,41(14):1−8. [YUAN Dan, ZHAO Mouming, ZHANG Sirui, et al. Acid-heat induced formation of soy protein isolate nanoparticles and its curcumin-loaded properties[J]. Food Science,2020,41(14):1−8. doi: 10.7506/spkx1002-6630-20190526-314
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回