Applied Research for Liquid-phase Chip Detection of Foodborne Salmonella Carrying Plasmid-mediated Quinolone Resistance Genes
-
摘要: 目的:建立应用新型液相芯片技术检测食源性沙门氏菌携带的质粒介导喹诺酮类耐药(PMQR)基因中4种基因:qnrS、aac(6')-Ib-cr、oqxA、oqxB的方法。方法:针对食源性沙门氏菌携带的qnrS、aac(6')-Ib-cr、oqxA、oqxB四种PMQR基因,设计对应引物和微球,采用液相芯片技术对7株标准菌株进行特异性实验;对4株各含1种PMQR基因的食源性沙门氏菌进行重复性和灵敏度实验;然后检测来自食源性风险监测的71株耐喹诺酮类沙门氏菌,和普通PCR进行对比实验。结果:成功建立了液相芯片技术检测食源性沙门氏菌携带的qnrS、aac(6')-Ib-cr、oqxA、oqxB四种PMQR基因的方法,携带qnrS基因的耐药株检出限为5 CFU/mL、携带aac(6')-Ib-cr基因的耐药株检出限为25 CFU/mL、携带oqxA和oqxB基因的耐药株检出限为10 CFU/mL。所有阳性判定结果荧光中位值(MFI)均≥5倍阴性对照组。重复性实验变异系数(CV)均小于5%,特异性实验结果特异性100%,阴性菌株无阳性信号反应。qnrS检出率29.6%(21/71)、aac(6')-Ib-cr 35.2%(25/71)、oqxA 28.2%(20/71)、oqxB 23.9%(17/71),方法比对的结果符合率为100%。结论:实验建立的液相芯片技术检测食源性沙门氏菌质粒介导喹诺酮类耐药基因qnrS、aac(6')-Ib-cr、oqxA、oqxB的方法具有灵敏度高、特异性好、稳定性强、结果准确的特点,可以为食源性沙门氏菌PMQR基因的检测以及耐药性的监控提供技术支撑。Abstract: Objective: To establish a method to detect four genes: qnrS, aac(6')-Ib-cr, oqxA, oqxB, among the plasmid-mediated quinolone resistance (PMQR) genes carried by foodborne Salmonella by applying a novel liquid-phase chip technique. Methods: For the four PMQR genes carried by foodborne Salmonella: qnrS, aac(6')-Ib-cr, oqxA, and oqxB, corresponding primers and microspheres were designed, and liquid-phase microarray technology was used to perform specificity experiments on seven standard strains. Reproducibility and sensitivity experiments were performed on four foodborne Salmonella strains containing one PMQR gene each. 71 quinolone resistant Salmonella strains from foodborne risk monitoring were tested, and a comparison experiment with ordinary PCR was carried out. Results: A method for the detection of four PMQR genes, qnrS, aac(6')-Ib-cr, oqxA and oqxB, in foodborne Salmonella was successfully established by liquid-phase microarray technology. The LOD (limit of detection) of qnrS, aac(6')-Ib-cr, oqxA and oqxB were 5, 25, 10 and 10 CFU/mL respectively. The median fluorescence values (MFI) of all positive determinations were ≥5 times those of the negative control group. The coefficients of variation (CV) of the repeatability experiments were less than 5%. In the specificity experiments, all quinolone resistant Salmonella strains were detected, and no cross-reactivity with other non-target bacteria was observed. The detection rate of qnrS, aac(6')-Ib-cr, oqxA and oqxB were 29.6% (21/71), 35.2% (25/71), 28.2% (20/71), 23.9% (17/71) respectively. The coincidence rate between the liquid chip technology and PCR was 100%. Conclusion: The experimentally established liquid-phase chip technique for the detection of foodborne Salmonella plasmid-mediated quinolone resistance genes qnrS, aac(6')-Ib-cr, oqxA and oqxB is characterized by high sensitivity, good specificity, stability, and accurate results, which can provide technical support for the detection of foodborne Salmonella PMQR genes and the monitoring of drug resistance.
-
表 1 特异性引物和对应微球编号
Table 1. Specific primers and corresponding microsphere numbers
基因名称 引物序列(5’-3’) 扩增片段(bp) 微球编号 qnrS F: TTAACAACTTATACAAACACAAAC/iSp12/
ACGACATTCGTCAACTGCAAR: Biotin/CGATTACTCACTTGATGGGC 212 MTAG-A053 aac(6')-Ib-cr F: AACTTTCTCTCTCTATTCTTATTT/iSp12/
TTGCGATGCTCTATGAGTGGCTAR: Biotin/ATACCCAATCGGCTCTCCAT 170 MTAG-A043 oqxA F: TACTTCTTTACTACAATTTACAAC/iSp12/
GATCAGTCAGTGGGATAGTTTR: Biotin/GCGCGATAGGTTCTGTCATC 162 MTAG-A015 oqxB F: CTATCATTTATCTCTTTCTCAATT/iSp12/
TTCTCCCCCGGCGGGAAGTACR: Biotin/GGCAGCGACCTTATTGGGAT 162 MTAG-A072 表 2 液相芯片技术特异性实验结果
Table 2. Experimental results of specificity of liquid chip technology
菌株 目标基因(微球编码) 中位荧光强度(MFI) 平均值(m±s.d) CV(%) 背景值 大肠埃希菌(ATCC25922) qnrS(A053) 120 123 126 123.0±3.0 2 110.5 aac(6')-Ib-cr(A043) 133 141 139 137.7±4.2 3 124 oqxA(A015) 98 95 101.5 98.2±3.3 3 100.5 oqxB(A072) 107 103 111 107.0±4.0 4 99 肺炎克雷伯杆菌(ATCC700603) qnrS(A053) 219 231 238 229.3±9.6 4 230 aac(6')-Ib-cr(A043) 241 255 263 253.0±11.1 4 209 oqxA(A015) 212 230 218 220.0±9.2 4 214 oqxB(A072) 261 249 251 253.7±6.4 3 250 金黄色葡萄球菌(ATCC25923) qnrS(A053) 264 270.5 284 272.8±10.2 4 261 aac(6')-Ib-cr(A043) 266 257.5 251 258.2±7.5 3 259 oqxA(A015) 271 260 276 269.0±8.2 3 257 oqxB(A072) 255.5 263 259 259.2±3.8 1 249 单核细胞增生李斯特氏菌(ATCC19114) qnrS(A053) 218 234 229 227.0±8.2 4 203.5 aac(6')-Ib-cr(A043) 235 244 251 243.3±8.0 3 231 oqxA(A015) 253 241 260.5 251.5±9.8 4 239 oqxB(A072) 233 246.5 251 243.5±9.4 4 227 副溶血性弧菌(ATCC17802) qnrS(A053) 126 135 132 131.0±4.6 3 133.5 aac(6')-Ib-cr(A043) 133 129 140 134.0±5.6 4 129 oqxA(A015) 109 105 114 109.3±4.5 4 107 oqxB(A072) 118 125 129 124.0±5.6 4 118 肠炎沙门氏菌(ATCC9270) qnrS(A053) 132 130 124 128.7±4. 2 3 128.5 aac(6')-Ib-cr(A043) 151 160 149 153.0±5.9 4 154 oqxA(A015) 162 153.5 165 160.2±6.0 4 162.5 oqxB(A072) 137 128 135.5 133.5±4.8 4 132.5 鼠伤寒沙门氏菌(ATCC14028) qnrS(A053) 150 139 144 144.3±5.5 4 138 aac(6')-Ib-cr(A043) 147.5 150 142 146.5±4.1 3 140.5 oqxA(A015) 138 142 131 137.0±5.6 4 135 oqxB(A072) 149 155 162 155.3±6.5 4 151 表 3 液相芯片技术重复性实验结果
Table 3. Experimental results of repeatability of liquid chip technology
菌株 目标基因(微球编码) 中位荧光强度(MFI) 平均值(s.d) CV(%) 背景值 qnrS阳性沙门菌(32040202201500024) qnrS(A053) 5148.5 5259 5367 5258.2±109.3 2 170 aac(6')-Ib-cr(A043) 170 164 173.5 169.2±4.8 3 154 oqxA(A015) 153 159 148 153.3±5.5 4 139 oqxB(A072) 177 180 168 175.0±6.2 4 167 aac(6')-Ib-cr阳性沙门菌(32040202201200018) qnrS(A053) 136 132 143 137.0±5.6 4 124 aac(6')-Ib-cr(A043) 3562 3643 3709 3638.0±73.7 2 154.5 oqxA(A015) 141 154 147 147.3±6.5 4 163.5 oqxB(A072) 140 135 144 139.7±4.5 3 111 oqxA阳性沙门菌(32040203201300015) qnrS(A053) 157 161 169 162.3±6.1 4 149 aac(6')-Ib-cr(A043) 153 156 160 156.3±3.5 2 142 oqxA(A015) 4854 4717 4933 4834.7±109.3 2 162.5 oqxB(A072) 169 164 159 164.0±5.0 3 160 oqxB阳性沙门菌(32040203201900107) qnrS(A053) 159 167.5 171 165.8±6.2 4 159.5 aac(6')-Ib-cr(A043) 163.5 167.5 177 169.3±6.9 4 154 oqxA(A015) 154 157.5 148 153.2±4.8 3 145 oqxB(A072) 4329 4368 4414.5 4370.5±42.8 1 181 表 4 液相芯片技术灵敏度实验结果
Table 4. Experimental results of sensitivity of liquid phase chip technology
菌株编号 目标基因(微球编码) 菌悬液浓度(CFU/mL) 中位荧光强度(MFI) 平均值(s.d) CV(%) 背景值 qnrS阳性沙门菌
(32040202201500024)qnrS(A053) 25 5013.5 5140 5226 5126.5±106.9 2 152.5 10 3726.5 3849 3617 3730.8±116.1 3 146 5 1342 1367 1349 1352.7±12.9 1 153 1 174.5 168 181 174.5±6.5 4 147 aac(6')-Ib-cr阳性沙门菌
(32040202201200018)aac(6')-Ib-cr(A043) 25 1435 1466 1508 1469.7±36. 7 2 105 10 346.5 332 350 342.8±9.5 3 171 5 261.5 242 254 252.5±9.8 4 144 1 113.5 109 119 113.8±5.0 4 107 oqxA阳性沙门菌
(32040203201300015)oqxA(A015) 25 3956 3856 3789 3867.0±84.0 2 108.5 10 1731.5 1822 1793.5 1782.3±46.3 3 119 5 357.5 347 332 345.5±12.8 4 122 1 108.5 118 113 113.2±4.8 4 105.5 oqxB阳性沙门菌
(32040203201900107)oqxB(A072) 25 4005.5 4103 4138 4082.2±68.7 2 163.5 10 1653.5 1589 1656 1632.8±38.0 2 138 5 345.5 363 333 347.2±15.1 4 125 1 117 120 114 117.0±3.0 3 116 -
[1] 陆姣, 王晓莉, 吴林海. 国内外食源性疾病防控的研究进展[J]. 中华疾病控制杂志,2017,21(2):196−197. [LU Jiao, WANG Xiaoli, WU Linhai. The progress of foodborne disease prevention and control in the world[J]. Chinese Journal of Disease Control,2017,21(2):196−197. [2] Food Standards Agency. The FSA foodborne disease strategy 2010-15 (England)[M]. London: Food Standars Agency, 2011: 4−5. [3] 苏丹萍, 吴云凤. 食源性致病菌风险评估研究进展[J]. 食品安全质量检测学报,2020,11(18):6515−6517. [SU Danping, WU Yunfeng. Research advances in risk assessment of food-borne pathogen[J]. Journal of Food Safety and Quality,2020,11(18):6515−6517. [4] 翁蕊, 辜依海, 张微. 食源性沙门菌流行趋势及耐药性研究进展[J]. 食品安全质量检测学报,2021,12(9):3543−3545. [WENG Rui, GU YiHai, ZHANG Wei. Research progress on epidemic trend and antimicrobial resistance research of foodborne Salmonella[J]. Journal of Food Safety and Quality,2021,12(9):3543−3545. [5] 梁莹, 杜潇利, 张妹中, 等. 综合医院食源性疾病病原学监测结果分析[J]. 中国公共卫生管理,2021,37(1):102−104. [LIANG Ying, DU Xiaoli, ZHANG Meizhong, et al. Analysis of surveillance results of foodborne disease etiology in a comprehensive hospital[J]. Chinese Journal of Public Health Management,2021,37(1):102−104. [6] 肖巍, 李想, 罗君. 2018-2020年河南省开封市儿童食源性沙门氏菌感染监测分析[J]. 河南预防医学杂志,2022,33(5):397−398. [XIAO Wei, LI Xiang, LUO Jun. Surveillance and analysis of foodborne Salmonella infection among children in Kaifeng city of Henan province from 2018 to 2020[J]. Henan Journal of Preventive Medicine,2022,33(5):397−398. [7] 毛旭建, 屠博文, 薛银刚, 等. 食源与人源性沙门氏菌的血清和耐药水平差异分析[J]. 公共卫生与预防医学,2021,32(3):63−65. [MAO Xujian, TU Bowen, XUE Yingang, et al. Analysis of serum and drug resistance levels between food source and human Salmonella[J]. Journal Public Health and Preventive Medicine,2021,32(3):63−65. doi: 10.3969/j.issn.1006-2483.2021.03.015 [8] ERKMEN O. Isolation and counting of Salmonella[J]. Microbiological Analysis of Foods and Food Processing Environments,2022:151−167. [9] 李光辉, 高雪丽, 郭卫芸, 等. 1996—2015年间沙门氏菌食物中毒事件特征分析[J]. 食品工业,2018(5):259−261. [LI Guanghui, GAO Xueli, GUO Weiyun, et al. Analysis on characteristics of Salmonella food poisoning events from 1996 to 2015[J]. The Food Industry,2018(5):259−261. [10] 刘书宏. 鲜肉源沙门氏菌优势血清型的基因分型与喹诺酮类耐药性及其基因的研究[D]. 南宁: 广西大学, 2018LIU Shuhong. Genotyping of predominant serotypes of Salmonella from fresh meat, quinolone resistance and its genes[D]. Nanning: Guangxi University, 2018. [11] MD CARDOSO, SANTOS A, RODRIGUES M, et al. Salmonella spp. profiles isolated from seabird samples from the Brazilian coast[J]. Preventive Veterinary Medicine,2021,193(4):105−113. [12] 葛琨, 武运, 杨保伟, 等. 乌鲁木齐牛羊肉源沙门氏菌对喹诺酮类药物的耐药状况及相关基因分析[J]. 食品科学,2017,38(4):107−109. [GE Kun, WU Yun, YANG Baowei, et al. Quinolone resistance characteristics and related gene analysis of Salmonella in beef and mutton retailed in Ürümqi[J]. Food Science,2017,38(4):107−109. doi: 10.7506/spkx1002-6630-201704018 [13] KIM J Y, HAN X, BAE J H, et al. Prevalence of Plasmid-mediated Quinolone Resistance (PMQR) genes in non-typhoidal Salmonella strains with resistance and reduced susceptibility to fluoroquinolones from human clinical cases in Alberta, Canada, 2009-13[J]. The Journal of Antimicrobial Chemotherapy,2016(2):55−58. [14] 张大燕. 浅谈抗生素滥用的危害及预防对策[J]. 心理月刊,2020,15(8):238−238. [ZHANG Dayan. Talking about the harm of abuse of antibiotics and Its preventive countermeasures[J]. Psy,2020,15(8):238−238. [15] 李少博, 贺稚非, 李洪军, 等. 食源性沙门氏菌耐药机制及药敏性检测方法研究现状[J]. 食品与发酵工业,2016,42(9):257−259. [LI Shaobo, HE Zhifei, LI Hongjun, et al. Current status of research on drug resistance mechanism and drug sensitivity detection methods of foodborne Salmonella[J]. Food and Fermentation Indusries,2016,42(9):257−259. [16] 杜昕悦, 杨哲敏, 赵宇, 等. 恩诺沙星与其他氟喹诺酮类药联合对畜禽常见病原菌抑菌效果探讨[J]. 黑龙江畜牧兽医,2019(20):140−143. [DU Xinyue, YANG Zhemin, ZHAO Yu, et al. Antibacterial effect of enrofloxacin combined with other fluoroquinolones on common pathogenic bacteria of livestock and poultry[J]. Heilongjiang Animal Science and Veterinary Medicine,2019(20):140−143. [17] 胡豫杰, 刘畅, 王美美, 等. 2016年中国26个省市食源性沙门菌耐药性特征分析[J]. 中国食品卫生杂志,2018,30(5):456−461. [HU Yujie, LIU Chang, WANG Meimei, et al. Resistance characteristic analysis for foodborne Salmonella isolates from China, 2016[J]. Chinese Journal of Food Hygiene,2018,30(5):456−461. [18] 黎明, 孔喜梅, 袁齐武, 等. 成都市未成年人群腹泻沙门氏菌血清型、耐药及分子分型研究[J]. 现代预防医学,2021,48(21):3996−4000. [LI Ming, KONG Ximei, YUAN Qiwu, et al. Serotype, drug resistance and molecular typing of Salmonella among children in Chengdu[J]. Modern Preventive Medicine,2021,48(21):3996−4000. [19] TOMOVA A, IVANOVA L, BUSCHMANN A H, et al. Plasmid-mediated quinolone resistance (PMQR) genes and class 1 integrons in quinolone-resistant marine bacteria and clinical isolates of Escherichia coli from an aquacultural area[J]. Microbial Ecology,2017,75(1):1−9. [20] 郝宏珊, 杨保伟, 师俊玲, 等. 鸡肉源沙门氏菌对喹诺酮和氟喹诺酮类抗生素耐药状况及相关基因[J]. 微生物学报,2011,51(10):1413−1420. [HAO Hongshan, YANG Baowei, SHI Junling, et al. Resistance of Salmonella from chicken to quinolone and fluoroquinolone antibiotics and related genes[J]. Acta Microbiologica Sinica,2011,51(10):1413−1420. [21] 关茹飞, 江萍, 高超, 等. 新疆乌鲁木齐市周边鸡场鸡源沙门氏菌耐药性及耐药基因的检测[J]. 中国农业科技导报,2017,19(10):28−35. [GUAN Rufei, JIANG Ping, GAO Chao, et al. In order to understand Salmonella tolerance chicken farms in Urumqi of Xinjiang and tolerance gene carrying situation[J]. Journal of Agricultural Science and Technology,2017,19(10):28−35. [22] 刘贵深, 于涛. 食源性沙门氏菌耐药性及质粒介导喹诺酮耐药基因检测[J]. 生物技术通报,2014,46(8):202−207. [LIU Guishen, YU Tao. Study on antimicrobial resistance and plasmid-mediated quinolone resistance of foodborne Salmonella isolates[J]. Biotechnology Bulletin,2014,46(8):202−207. [23] 林居纯, 覃春红, 赖婧, 等. 食品动物源沙门氏菌质粒介导喹诺酮类耐药基因的检测与分析[J]. 畜牧兽医学报,2012(5):803−809. [LIN Juchun, QIN Chunhong, LAI Jing, et al. Detection and analysis of plasmid-mediated quinolone resistance in Salmonella isolates from food animals[J]. Acta Veterinaria et Zootechnica Sinica,2012(5):803−809. [24] JONESDIAS D, MANAGEIRO V, FRANCISCO A P, et al. Assessing the molecular basis of transferable quinolone resistance in Escherichia coli and Salmonella spp. from food-producing animals and food products[J]. Veterinary Microbiology,2013,167(3−4):523−531. doi: 10.1016/j.vetmic.2013.08.010 [25] 王旭东, 王凡, 周冰倩, 等. 重庆市北碚区宠物源沙门氏菌耐药性监测及ESBL和PMQR基因检测[J]. 微生物学通报,2021,48(8):2714−2722. [WANG Xudong, WANG Fan, ZHOU Bingqian, et al. Surveillance of antimicrobial resistance and detection of ESBL and PMQR genes in pet-associated Salmonella in Beibei District, Chongqing[J]. Microbiology China,2021,48(8):2714−2722. [26] DUNBAR S A, JACOBSON J W. Quantitative, multiplexed detection of Salmonella, and other pathogens by Luminex xMAPTM suspension array[M]. Methods Mol Biol, 2007, 394: 1−19. [27] NIKOL R, VERONIKA M, MARTIN K, et al. xMAP technology: Applications in detection of pathogens[J]. Frontiers in Microbiology,2017,8(55):32−36. [28] 郑之北, 郑伟, 濮小英, 等. 沙门菌H抗原的xTAG法鉴定[J]. 中华微生物学和免疫学杂志,2016,36(12):942−947. [ZHENG Zhibei, ZHENG Wei, PU Xiaoying, et al. Identification of Salmonella H antigen by xTAG[J]. Chinese Journal of Microbiology and Immunology,2016,36(12):942−947. doi: 10.3760/cma.j.issn.0254-5101.2016.12.011 [29] VANWONG N, NGAMSAMUT N, HONGKAEW Y, et al. Detection of CYP2D6 polymorphism using Luminex xTAG technology in autism spectrum disorder: CYP2D6 activity score and its association with risperidone levels[J]. Drug Metab Pharmacokinet,2016:156−162. [30] 白莉, 张秀丽, 甘辛, 等. 肉鸡养殖场中环丙沙星和头孢噻肟双重耐药沙门菌耐药机制的研究[J]. 中国食品卫生杂志,2015,27(5):487−494. [BAI Li, ZHANG Xiuli, GAN Xin, et al. Molecular characteristics of ciprofloxacin and cefotaxime co-resistant Salmonella isolates in broiler flocks[J]. Chinese Journal of Food Hygiene,2015,27(5):487−494. [31] 林亚军, 郭菲, 夏利宁, 等. 新疆乌鲁木齐市宠物源沙门氏菌耐药性及耐药基因检测[J]. 中国农业大学学报,2018,23(7):9−10. [LIN Yajun, GUO Fei, XIA Lining, et al. Detection of drug resistance and resistant genes of Salmonella from pets in Urumqi[J]. Journal of China Agricultural University,2018,23(7):9−10. doi: 10.11841/j.issn.1007-4333.2018.07.09 [32] 覃春红. 动物源沙门氏菌耐药性及质粒介导喹诺酮类耐药基因的流行病学研究[D]. 雅安: 四川农业大学, 2011QIN Chunhong. The epidemiological study of antimicrobial resistance and plasmid-mediated quinolone resistance genes in Salmonella isolated from animals[D]. Ya'an: Sichuan Agricultural University, 2011. [33] LEE S, PARK N YUN S J, et al. Presence of plasmid-mediated quinolone resistance (PMQR) genes in non-typhoidal Salmonella strains with reduced susceptibility to fluoroquinolones isolated from human salmonellosis in Gyeonggi-do, South Korea from 2016 to 2019[J]. Gut Pathogens,2021,13(1):714−715. [34] DIVYA S P, CHANDRADASAN A, PRANAV P K. Prevalence of plasmid-mediated quinolone resistance (PMQR) genes and beta-lactamase genes among Salmonella, vibrio parahaemolyticus and Escherichia coli from shellfish[J]. Fishery Technology,2020(1):57. [35] 张林杰. 基于Luminex液相芯片技术检测急性脑梗死患者炎性T细胞因子动态变化[D]. 南宁: 广西中医药大学, 2021ZHANG Linjie. Dynamic changes of inflammatory T cytokines in patients with acute cerebral infarction were detected based on Luminex liquid chip technology[J]. Nanning: Guangxi University of Chinese Medicine, 2021. [36] 曹广进. 利用液相芯片技术检测儿童急性呼吸道感染及感染性腹泻病原体的研究[D]. 广州: 南方医科大学, 2019CAO Guangjin. Study on detection of the pathogens of acute respiratory tract infection and infectious diarrhea in children by using liquid-phase microarray technology[J]. Guangzhou: Southern Medical University, 2019. [37] 肖丽, 丛峰, 朱余军, 等. 建立快速检测禽白血病病毒的液相芯片方法[J]. 实验动物科学,2017,34(5):28−30, 36. [XIAO Li, CONG Feng, ZHU Yujun, et al. Establishment of liquid chip method for rapid detection of avian leukemia virus[J]. Laboratory Animal Science,2017,34(5):28−30, 36. doi: 10.3969/j.issn.1006-6179.2017.05.006 [38] 戴莹, 雷亚克, 岳苗苗, 等. 应用液相芯片技术检测六种输入性烈性传染病病原的方法研究[J]. 中国病原生物学杂志,2019,14(11):1303−1307. [DAI Ying, LEI Yake, YUE Miaomiao, et al. Study on detection of six imported severely infectious pathogens using Luminex liquid chip technology[J]. Journal of Pathogen Biology,2019,14(11):1303−1307. [39] 郭容, 董晓妹, 别闯南, 等. 五种重要致病性弧菌高通量液相芯片检测方法的建立[J]. 中国兽医科学,2021,51(7):805−813. [GUO Rong, DONG Xiaomei, BIE Chuangnan, et al. Establishment of high throughput liquid chip for detection of five important pathogenic vibrios[J]. Veterinary Science in China,2021,51(7):805−813. [40] 叶硕, 杨元斌, 周伟艳, 等. 7种致病性弧菌xTAG液相芯片快速筛查方法的建立[J]. 中国卫生检验杂志,2020,30(20):2446−2450. [YE Shuo, YANG Yuanbin, ZHOU Weiyan, et al. A rapid screening system for the detection of seven kinds of pathogenic based on Luminex x-TAG technology[J]. Chinese Journal of Health Laboratory Technology,2020,30(20):2446−2450. [41] 史贇学. 四种食源性致病菌液相芯片xTAG技术检测方法的建立[D]. 长春: 吉林农业大学, 2019SHI Yunxue. Establishment of a method for the simultaneous detection of four foodborne pathogens using high-throughput suspension array xTAG technology[J]. Changchun: Jilin Agricultural University, 2019. [42] 伍业健, 吴新伟, 陶霞, 等. 应用液相芯片技术快速检测常见食源性致病菌的研究[J]. 中国卫生检验杂志,2018,28(14):1672−1675, 1679. [WU Yejian, WU Xinwei, TAO Xia, et al. Rapid detection of common food-borne pathogens with suspension array[J]. Chinese Journal of Health Laboratory Technology,2018,28(14):1672−1675, 1679. [43] 金玉娟, 陈应坚, 甘莉萍, 等. 应用液相芯片技术联合多重PCR快速检测四种常见食源性致病菌的研究[J]. 热带医学杂志,2015,15(6):735−740. [JIN Yujuan, CHEN Yingjian, GAN Liping, et al. Application of a suspension array technology and the multiplex PCR for rapid detection of four common food-borne pathogens[J]. Journal of Tropical Medicine,2015,15(6):735−740. doi: 10.3969/j.issn.1672-3619.2015.06.006 [44] BORUCKI M K, REYNOLDS J, CALL D R, et al. Suspension microarray with dendrimer signal amplification allows direct and high-throughput subtyping of Listeria monocytogenes from genomic DNA[J]. J Clin Microbiol,2005,43(7):3255−3259. doi: 10.1128/JCM.43.7.3255-3259.2005 [45] 赵莹, 屠博文, 毛旭建, 等. 液相悬浮芯片技术在沙门氏菌血清分型中的应用优势[J]. 公共卫生与预防医学,2021,32(3):75−79. [ZHAO Ying, TU Bowen, MAO Xujian, et al. Application advantages of liquid phase suspension chip technique in Salmonella serotyping[J]. Journal Public Health and Preventive Medicine,2021,32(3):75−79. doi: 10.3969/j.issn.1006-2483.2021.03.018 [46] 蔡标, 戴陈伟, 吕涵, 等. 3种快速检测沙门氏菌方法的比较分析[J]. 食品安全质量检测学报,2019,10(18):6036−6041. [CAI Biao, DAI Chenwei, LYU Han, et al. Comparative analysis of 3 rapid detection methods for Salmonella[J]. Journal of Food Safety and Quality,2019,10(18):6036−6041. [47] 毛旭建, 唐宏兵, 屠博文, 等. 液相芯片技术在沙门菌抗原缺失血清型鉴定中的应用[J]. 江苏预防医学,2019,30(3):337−339. [MAO Xujian, TANG Hongbing, TU Bowen, et al. Application of liquid chip technology in identification of Salmonella antigen deletion serotype[J]. Jiangsu Journal of Preventive Medicine,2019,30(3):337−339. [48] 董慧. 液相芯片技术分析氟西汀对抑郁大鼠趋化因子的影响[J]. 徐州医科大学学报,2022,42(2):91−96. [DONG Hui. Effect of fluoxetine on the level of serum chemokines in chronic unpredicted mild stress rats by Luminex assa[J]. Journal of Xuzhou Medical University,2022,42(2):91−96. doi: 10.3969/j.issn.2096-3882.2022.02.003 [49] 车荣飞, 白茹, 孙聪, 等. 呼吸道感染多病原检测试剂盒Luminex NxTAG~(TM)RPP与一代测序性能对比[J]. 国际病毒学杂志,2021,28(1):57−61. [CHE Rongfei, BAI Ru, SUN Cong, et al. Comparison between Luminex NxTAG~(TM) RPP and first generation sequencing performance of respiratory tract infection multi pathogen detection kit[J]. International Journal of Virology,2021,28(1):57−61. doi: 10.3760/cma.j.issn.1673-4092.2021.01.013 [50] 叶硕, 郑健, 周伟艳, 等. Luminex x-TAG技术在金黄色葡萄球菌肠毒素快速分型中的应用[J]. 中国卫生检验杂志,2020,30(21):2564−2567, 2571. [YE Shuo, ZHENG Jian, ZHOU Weiyan, et al. A rapid screening system for the detection of Staphylococcal enterotoxin based on Luminex x-TAG technology[J]. Chinese Journal of Health Laboratory Technology,2020,30(21):2564−2567, 2571. [51] POPOWITCH ELENA B, KAPLAN SAM, WU ZENGLIN, et al. Comparative performance of the Luminex NxTAG respiratory pathogen panel, GenMark eSensor respiratory viral panel, and biofire filmarray respiratory panel[J]. Microbiology Spectrum,2022:1164. [52] KING A, KING G, WEISS C, et al. Detection of IgG antibodies to SARS-CoV-2 and neutralizing capabilities using the Luminex® xMAP® SARS-CoV-2 multi-antigen IgG assay[J]. Methods in Molecular Biology (Clifton, N. J.),2022:2511−2513. [53] MARÍNROMERO A, TABRAUECHÁVEZ M, LÓPEZLONGARELA B, et al. Simultaneous detection of drug-induced liver injury protein and microRNA biomarkers using dynamic chemical labelling on a Luminex MAGPIX system[J]. Analytica,2021,2(4):19−24. [54] YOO J, LEE S, LEE H W, et al. Assessment of rapid optimized 96-well tray flow cytometric crossmatch (Halifax-FCXM) with Luminex single antigen test[J]. Human Immunology,2021,82(4):234−235.