留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于UPLC-Q-Exactive-MS/MS的藜麦皂苷提取物及入血成分分析

王伟宏 胡菊丽 吴定涛 王诗洁 蒋红 邹亮 胡一晨

王伟宏,胡菊丽,吴定涛,等. 基于UPLC-Q-Exactive-MS/MS的藜麦皂苷提取物及入血成分分析[J]. 食品工业科技,2023,44(9):296−308. doi: 10.13386/j.issn1002-0306.2022050100
引用本文: 王伟宏,胡菊丽,吴定涛,等. 基于UPLC-Q-Exactive-MS/MS的藜麦皂苷提取物及入血成分分析[J]. 食品工业科技,2023,44(9):296−308. doi: 10.13386/j.issn1002-0306.2022050100
WANG Weihong, HU Juli, WU Dingtao, et al. Analysis of Quinoa Saponin Extract and Blood Constituents Based on UPLC-Q-Exactive-MS/MS[J]. Science and Technology of Food Industry, 2023, 44(9): 296−308. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050100
Citation: WANG Weihong, HU Juli, WU Dingtao, et al. Analysis of Quinoa Saponin Extract and Blood Constituents Based on UPLC-Q-Exactive-MS/MS[J]. Science and Technology of Food Industry, 2023, 44(9): 296−308. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050100

基于UPLC-Q-Exactive-MS/MS的藜麦皂苷提取物及入血成分分析

doi: 10.13386/j.issn1002-0306.2022050100
基金项目: 内蒙古自治区科学技术厅中央引导地方科技发展资金项目(2022ZY0138);农业国家标准和行业标准制修订项目(HYB-20357)。
详细信息
    作者简介:

    王伟宏(1997−),男,硕士研究生,研究方向:食品加工与安全,E-mail:617737751@qq.com

    通讯作者:

    胡一晨(1987−),女,博士,副教授,研究方向:食品功能营养因子评价与分析,E-mail:huyichen0323@126.com

  • 中图分类号: TS219

Analysis of Quinoa Saponin Extract and Blood Constituents Based on UPLC-Q-Exactive-MS/MS

  • 摘要: 运用超高效液相色谱-四级杆-静电场轨道离子阱联用质谱(UPLC-Q-Exactive-MS/MS)对藜麦皂苷提取物的主要化学成分及大鼠口服入血成分进行分析鉴定。采用Hypersil Gold VANQUISH C18色谱柱(2.1 mm×100 mm,1.8 μm),流动相为甲酸水-甲酸乙腈梯度洗脱,柱温30 ℃,分析时间35 min,流速0.3 mL·min−1。采用电喷雾离子源(ESI),正、负离子源,Full ms/dd-ms2模式检测。结果显示方法的回收率、基质效应、精密度和稳定性等均符合生物样品的测定要求。在藜麦皂苷提取物中共鉴定到15种皂苷,按苷元构型分为齐墩果酸型皂苷3种,常春藤型皂苷5种,商陆酸型皂苷6种,Serjanic acid型皂苷1种。选用雄性Sprague-Dawley(SD)大鼠,以175.5 mg·kg−1灌胃给予藜麦皂苷提取物,于给药后0、0.5、1、2、4 h下,眼眶取血,大鼠血浆以盐酸丁螺环酮为内标,用甲醇沉淀蛋白,离心,微孔滤膜过滤后进样分析。结果显示在入血成分中共检测到6种原型皂苷以及微量水解后的常春藤皂苷元和Serjanic acid苷元。通过对提取物组成成分及入血成分分析,共鉴定出藜麦皂苷中15个皂苷类化合物及裂解规律,发现了大鼠血浆入血成分相对含量变化情况。初步阐明了藜麦三萜皂苷的化学组成以及体内代谢特征,为藜麦进一步研究和开发应用提供理论依据。

     

  • 图  藜麦三萜皂苷中四种主要苷元

    注:Ⅰ:齐墩果酸型皂苷元;Ⅱ:常春藤型皂苷元;Ⅲ:商陆酸型皂苷元;Ⅳ:Serjanic acid型皂苷元。

    Figure  1.  Four main aglycones in triterpene saponins of quinoa

    图  空白溶液(A)和藜麦皂苷(B)的基峰色谱图

    Figure  2.  Base peak chromatogram of blank solution (A) and quinoa saponin (B)

    图  在Full ms/dd-ms2扫描模式和正离子模式下的7号商陆酸型皂苷的质谱图与结构图

    注:A:7号化合物的结构式;B:正离子模式下商陆酸型皂苷元裂解质谱图;C:正离子模式下7号化合物裂解质谱图;D:7号化合物裂解途径。

    Figure  3.  Mass spectrum and structure diagram of Phytolaccagenic acid saponins No.7 in Full ms/dd-ms2 scanning mode and positive ion mode

    图  在Full ms/dd-ms2扫描模式和正离子模式下的9号常春藤型皂苷的质谱图与结构图

    注:A:9号化合物的结构式;B:正离子模式下常春藤型皂苷元裂解质谱图;C:正离子模式下9号化合物裂解质谱图;D:9号化合物裂解途径。

    Figure  4.  Mass spectrum and structure diagram of Hederagenin saponins No.9 in Full ms/dd-ms2 scanning mode and positive ion mode

    图  在Full ms/dd-ms2扫描模式和正离子模式下的12号齐墩果酸型皂苷的质谱图与结构图

    注:A:12号化合物的结构式;B:正离子模式下齐墩果酸型皂苷元裂解质谱图;C:正离子模式下12号化合物裂解质谱图;D:12号化合物裂解途径。

    Figure  5.  Mass spectrum and structure diagram of Oleanolic acid saponin No.12 in Full ms/dd-ms2 scanning mode and positive ion mode

    图  在Full ms/dd-ms2扫描模式和正离子模式下的13号Serjania acid型皂苷质谱图与结构图

    注:A:13号化合物的结构式;B:正离子模式下齐Serjania acid型皂苷元裂解质谱图;C:正离子模式下13号化合物裂解质谱图;D:13号化合物裂解途径。

    Figure  6.  Mass spectrum and structure diagram of Serjania acid saponin No.13 in Full ms/dd-ms2 scanning mode and positive ion mode

    图  大鼠血浆入血成分相对峰面积

    注:As:待测物峰面积;Ai:内标物峰面积。

    Figure  7.  Relative peak area of rat plasma entry components

    表  1  稳定性、精密度、重复性和回收率结果

    Table  1.   Results of stability, precision, repeatability and recovery

    对照品稳定性(n=6)精密度(n=6)重复性(n=6)回收率(n=6)
    AsAs/AiRSD(%)AsAs/AiRSD(%)AsAs/AiRSD(%)回收率平均值(%)RSD(%)
    常春藤皂苷元652767930.65090515.13%587766180.58608888.17555898760.55431244.87108.35106.387.32
    684492640.7079094542384150.5609393572095250.5916668105.68
    716224120.6908903691371730.6669170621441970.5994607108.35
    369143450.7173293282403960.5487748294286140.5718646106.92
    666430960.6265274566057920.5321644565950460.5320633103.65
    687847850.6893669580261450.5815429538447780.5396369105.33
    齐墩果酸811244760.80892977.22%1170860241.16751909.26989082150.98625968.5688.6891.368.63
    711720990.73606921028426731.0636096918126770.949536292.25
    886172220.85482721252102021.2078136941674360.908366189.51
    398997150.7753418534682721.0390096452166550.878662089.37
    960987480.90344701038932030.9767245845441980.794819994.59
    806778210.8085600963400140.9655278807170470.808953193.81
    注:As:待测物峰面积;Ai:内标物峰面积。
    下载: 导出CSV

    表  2  UPLC-Q-Exactive-MS/MS鉴定藜麦三萜皂苷类成分的质谱数据

    Table  2.   Identification of triterpenoid saponins from quinoa by UPLC-Q-Exactive-MS/MS

    编号化合物鉴定化学式正离子模式[M+H]+保留时间(min)dd-MS2扫描模式下碎片离子(m/z)
    1Hederagenin 3-O-[α-L-arabinopyranosyl-(1,3)-β-D-glucuronopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[α-L-吡喃阿拉伯糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷
    C47H76O18929.510938.52767.45898635.41531473.36304
    2Phytolaccagenic acid 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside
    商陆酸3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷
    C42H66O15811.446928.79649.39771517.35339
    3Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,4)-β-D-glucopyranosyl-(1,4)-β-D-glucopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,4)-β-D-吡喃葡萄糖-(1,4)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷
    C55H88O261165.561289.121003.51030841.45740679.40479517.35272
    4Phytolaccagenic acid 3-O-[β-D-galactopyranosyl-(1,3)-β-D-glucopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃半乳糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷
    C49H78O211003.510449.47841.45624679.40515517.35291
    5Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-β-D-galactopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-β-D-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷
    C49H78O211003.510139.86841.45844679.40558517.35321
    6Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C54H86O251135.5534710.29973.50056811.44745649.39423517.35278
    7Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C48H76O20973.5005511.05811.44836649.39435517.35333
    8Hederagenin 3-O-[β-D-glucopyranosyl-(1,3)-α-L-galactopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷
    C48H78O19959.5198411.27797.46783635.41577473.36346
    9Hederagenin 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C47H76O18929.5109911.73767.45789605.40521473.36298
    10Hederagenin 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C53H86O231091.5612812.05929.5116767.45801605.40508473.36319
    11Hederagenin 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷
    C41H66O13767.4576412.35605.40472473.36237
    12Oleanolic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    齐墩果酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C47H76O17913.5175212.48751.46002589.40045457.36682
    13Serjanic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    Serjanic acid 3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C48H76O19957.5056813.41795.45209633.39984501.35756
    14Oleanolic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside
    齐墩果酸3-O-β-D-吡喃葡萄糖-28-O-β-D-吡喃葡萄糖苷
    C42H66O14795.4529713.44633.39948457.36593
    15Oleanolic acid 3-O-[α-L-arabinopyranosyl-(1,3)-β-D-glucuronopyranosyl]-28-O-β-D-glucopyranoside
    齐墩果酸3-O-[α-L-吡喃阿拉伯糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷
    C47H74O18927.4930414.02765.44299633.39995457.36887
    下载: 导出CSV

    表  3  大鼠血浆入血成分相对峰面积

    Table  3.   Relative peak area of rat plasma entry components

    编号化合物鉴定化学式模式[M-H]保留时间tR(min)相对峰面积(As/Ai
    0.5 h1 h2 h4 h
    2Phytolaccagenic acid 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside
    商陆酸3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷
    C42H66O15809.4328911.270.17098±
    0.02866
    0.14143±
    0.05608
    0.14780±
    0.04169
    0.04774
    5Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-β-D-galactopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-β-D-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷
    C49H78O211001.496289.880.12522±
    0.02067
    0.07786±
    0.00196
    0.03245±
    0.00825
    6Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C54H86O251133.5385410.280.12859±
    0.03949
    0.05083±
    0.00175
    0.00794±
    0.00563
    7Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C48H76O20971.4857210.340.10510±
    0.01793
    0.08419±
    0.03161
    0.04042±
    0.01253
    0.03210
    10Hederagenin 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C53H86O231089.5487111.420.09150±
    0.00513
    0.04665±
    0.00243
    0.05090±
    0.02008
    14Oleanolic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside
    齐墩果酸3-O-β-D-吡喃葡萄糖-28-O-β-D-吡喃葡萄糖苷
    C42H66O14793.4379812.690.17367±
    0.02133
    0.17086±
    0.04170
    0.09452±
    0.01630
    下载: 导出CSV
  • [1] 胡一晨, 赵钢, 秦培友, 等. 藜麦活性成分研究进展[J]. 作物学报,2018,44(11):1579−1591. [HU Y C, ZHAO G, QIN P Y, et al. Research progress on bioactive components of quinoa (Chenopodium quinoa Willd.)[J]. Acta Agronomica Sinica,2018,44(11):1579−1591. doi: 10.3724/SP.J.1006.2018.01579
    [2] 王龙飞, 王新伟, 赵仁勇. 藜麦蛋白的特点、性质及提取的研究进展[J]. 食品工业,2017,38(7):255−258. [WANG L F, WANG X W, ZHAO R Y. A review of characteristic, properties and extraction of quinoa protein[J]. The Food Industry,2017,38(7):255−258.
    [3] 黄金. 基于藜麦营养及功能成分的健康食品研发[D]. 贵阳: 贵州大学, 2017

    HUANG J. The research of health food on the based of the quinoa nutritional and functional ingredient[D]. Guiyang: Guizhou University, 2017.
    [4] 李萍, 罗强, 金鑫, 等. 藜麦皂苷的提取及其酪氨酸酶抑制活性[J]. 现代食品科技,2021,37(5):196−202,129. [LI P, LUO Q, JIN X, et al. Separation of saponins from Chenopodium quinoa and its tyrosinase inhibitory activities[J]. Modern Food Science and Technology,2021,37(5):196−202,129. doi: 10.13982/j.mfst.1673-9078.2021.5.0931
    [5] 魏爱春, 杨修仕, 么杨, 等. 藜麦营养功能成分及生物活性研究进展[J]. 食品科学,2015,36(15):272−276. [WEI A C, YANG X S, YAO Y, et al. Progress in research on nutritional and functional components and bioactivity of quinoa (Chenopodium quinoa Willd.)[J]. Food Science,2015,36(15):272−276. doi: 10.7506/spkx1002-6630-201515050
    [6] PALOMBINI S V, CLAUS T, MARUYAMA S A, et al. Evaluation of nutritional compounds in new amaranth and quinoa cultivars[J]. Food Science and Technology,2013,33(2):339−344. doi: 10.1590/S0101-20612013005000051
    [7] MERILLON J M, RAMAWAT K G. Co-Evolution of secondary metabolites[M]. Berlin: Springer, 2019.
    [8] MADL T, STERK H, MITTELBACH M, et al. Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa[J]. Journal of the American Society for Mass Spectrometry,2006,17(6):795−806. doi: 10.1016/j.jasms.2006.02.013
    [9] 张剑峰, 张丹参. 三七总皂苷药理作用研究进展[J]. 医学综述,2007,13(6):472−474. [ZHANG J F, ZHANG D S. Study advancement in pharmalcological actions of total saponins of panax notoginseseng[J]. Medical Recapitulate,2007,13(6):472−474. doi: 10.3969/j.issn.1006-2084.2007.06.032
    [10] HAZZAM K E, HAFSA J, SOBEH M, et al. An insight into saponins from quinoa (Chenopodium quinoa Willd.): A review[J]. Molecules,2020,25(5):1059. doi: 10.3390/molecules25051059
    [11] 侯召华, 傅茂润, 张威毅, 等. 藜麦皂苷研究进展[J]. 食品安全质量检测学报,2018,9(19):5146−5152. [HOU Z H, FU M R, ZHANG W Y, et al. Research progress on saponins of quinoa (Chenopodium quinoa Willd.)[J]. Journal of Food Safety and Quality,2018,9(19):5146−5152. doi: 10.3969/j.issn.2095-0381.2018.19.023
    [12] GIANNA V, MONTES J M, CALANDRI E L, et al. Impact of several variables on the microwave extraction of Chenopodium quinoa Willd saponins[J]. International Journal of Food Science and Technology,2012,47(8):1593−1597. doi: 10.1111/j.1365-2621.2012.03008.x
    [13] 杜静婷. 藜麦种皮皂苷的提取, 纯化, 抗氧化, 抑菌及皂苷元的成分鉴定[D]. 太原: 山西大学, 2017

    DU J T. Extraction, purification, antioxidant and antimicrobial of saponin in Chenopodium quinoa Willd. seed coat and component identification of aglycone[D]. Taiyuan: Shanxi University, 2017.
    [14] ODA K, MATSUDA H, MURAKAMI T, et al. Adjuvant and haemolytic activities of 47 saponins derived from medicinal and food plants[J]. Biological Chemistry,2000,381(1):67−74.
    [15] 张若洁. 芦笋皂苷的提取、纯化及其溶血活性研究[D]. 武汉: 华中农业大学, 2011

    ZHANG R J. Studies on the extraction, purification and hemocytolysis of asparagus saponins[D]. Wuhan: Huazhong Agricultural University, 2011.
    [16] LIANG Y, HAO H P, XIE L, et al. Development of a systematic approach to identify metabolites for herbal homologs based on liquid chromatography hybrid ion trap time-of-flight mass spectrometry: Gender-related difference in metabolism of Schisandra lignans in rats[J]. Drug Metabolism and Disposition: The Biological Fate of Chemicals,2010,38(10):1747−1759. doi: 10.1124/dmd.110.033373
    [17] VERZA S G, SILVEIRA F, CIBULSKI S, et al. Immunoadjuvant activity, toxicity assays, and determination by UPLC/Q-TOF-MS of triterpenic saponins from Chenopodium quinoa seeds[J]. Journal of Agricultural and Food Chemistry,2012,60(12):3113. doi: 10.1021/jf205010c
    [18] GORAL I, WOJCIECHOWSKI K. Surface activity and foaming properties of saponin-rich plants extracts[J]. Advances in Colloid and Interface Science,2020,279:102145. doi: 10.1016/j.cis.2020.102145
    [19] 王勇, 张宪臣, 华洪波, 等. 超高效液相色谱-四级杆/静电场轨道阱高分辨质谱联用快速测定水产品及干制水产品制品中的116种农药和24种生物毒素残留[J]. 现代食品科技,2022,38(1):371−389, 335. [WANG Y, ZHANG X C, HUA H B, et al. Simultaneous determination and confirmation of 116 pesticides residues and 24 biotoxins in aquatic product and dried aquatic product by ultra liquid chromatography coupled with quadrupole/exactive orbitrap mass spectrometry[J]. Modern Food Science and Technology,2022,38(1):371−389, 335. doi: 10.13982/j.mfst.1673-9078.2022.1.0441
    [20] 国家药典委员会. 中国药典[M]. 北京: 中国医药科技出版社, 2020

    Chinese Pharmacopoeia Commission. Chinese pharmacopoeia[M]. Beijing: China Medical Science Press, 2020
    [21] COLSON E, SAVARINO P, CLAEREBOUDT E, et al. Enhancing the membranolytic activity of Chenopodium quinoa saponins by fast microwave hydrolysis[J]. Molecules,2020,25(7):1731. doi: 10.3390/molecules25071731
    [22] 傅俊. 牛膝三萜皂苷类成分定性分析及其体内外代谢初步研究[D]. 合肥: 安徽中医药大学, 2019

    FU J. Qualitative analysis of triterpenoid saponins from achyranthes bidentata and preliminary study on metabolism in vitro and in vivo[D]. Hefei: Anhui University of Traditional Chinese Medicine, 2019.
    [23] ZHU N Q, SHENG S Q, SANG S M, et al. Triterpene saponins from debittered quinoa (Chenopodium quinoa) seeds[J]. Journal of Agricultural and Food Chemistry,2002,50(4):865−867. doi: 10.1021/jf011002l
    [24] KULJANABHAGAVAD T, THONGPHASUK P, CHAMULITRAT W, et al. Triterpene saponins from Chenopodium quinoa Willd[J]. Phytochemistry,2008,69(9):1919−1926. doi: 10.1016/j.phytochem.2008.03.001
    [25] WOLDEMICHAEL G M, WINK M. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa[J]. Journal of Agricultural and Food Chemistry,2001,49(5):2327−2332. doi: 10.1021/jf0013499
    [26] MA W W, HEINSTEINP F, MCLAUGHLINC J L. Additional toxic, bitter saponins from the seeds of Chenopodium quinoa[J]. Journal of Natural Products,1989,52(5):1132−1135. doi: 10.1021/np50065a035
    [27] DINI I, TENORE G C, SCHETTINO O, et al. New oleanane saponins in Chenopodium quinoa[J]. Journal of Agricultural and Food Chemistry,2001,49(8):3976−3981. doi: 10.1021/jf010361d
    [28] 黄晶. 基于UPLC/Q-TOF-MS技术的蜜炙黄芪大鼠体内代谢成分分析[D]. 广州: 广东药科大学, 2017

    HUANG J. Analysis of metabolites of honey-processed astragalus in rats based on UPLC/Q-TOF-MS[D]. Guangzhou: Guangdong Pharmaceutical University, 2017.
    [29] 张勐. 基于UPLC/Q-TOF技术的独一味化学成分与血清代谢物分析及抗炎活性研究[D]. 西宁: 青海师范大学, 2021

    ZHANG M. Analysis of chemical constituents and serum metabolites of Lamiophlomis rotata (Benth.) Kudo and their anti-inflammatory activities based on UPLC/Q-TOF Technology[D]. Xining: Qinghai Normal University, 2021.
    [30] 马保连, 李军茂, 何明珍, 等. 基于UHPLC-Q-TOF/MS的预知子入血成分及其体内代谢研究[J]. 中药新药与临床药理,2020,31(11):1350−1359. [MA B L, LI J M, HE M Z, et al. In vivo studies of the metabolites of Akebiae Fructus extract based on UHPLC-Q-TOF/MS method[J]. Traditional Chinese Drug Research and Clinical Pharmacology,2020,31(11):1350−1359. doi: 10.19378/j.issn.1003-9783.2020.11.013
    [31] 顾东风, 翁建平, 鲁向锋. 中国健康生活方式预防心血管代谢疾病指南[J]. 中国循环杂志,2020,35(3):209−230. [GU D F, WENG J P, LU X F. Chinese guideline on healthy lifestyle to prevent cardiometabolic diseases[J]. Chinese Circulation Journal,2020,35(3):209−230.
    [32] 刘颖, 蔡伟, 李宁, 等. UHPLC-LTQ-Orbitrap MS结合高能碰撞诱导裂解技术快速鉴定大鼠口服麦冬甾体皂苷后的血中移行成分[J]. 药学学报,2016,51(11):1751−1758. [LIU Y, CAI W, LI N, et al. Rapid characterization of constituents absorbed into blood after oral administration of steroidal saponins from Radix ophiopogonis using UHPLC-LTQ-Orbitrap MS coupled with higher energy collision induced dissociation[J]. Acta Pharmaceutica Sinica,2016,51(11):1751−1758.
    [33] LIN B J, QI X, FANG L, et al. In vivo acute toxicity and mutagenic analysis of crude saponins from Chenopodium quinoa Willd husks[J]. RSC Advances,2021,11(8):4829−4841. doi: 10.1039/D0RA10170B
    [34] 宋登鹏, 王雪芹, 王永慧, 等. 柴胡皂苷类化合物体内代谢途径及其代谢产物的研究进展[J]. 药物评价研究,2019,42(7):1460−1465. [SONG D P, WANG X Q, WANG Y Q, et al. Research progress on metabolic pathways in vivo and their metabolites of saikosaponin[J]. Drug Evaluation Research,2019,42(7):1460−1465.
    [35] 陈原国, 瞿伟菁, 杨乃乙, 等. 蒺藜总皂苷灌胃大鼠体内海柯皂苷元的代谢与分布[J]. 天然产物研究与开发,2006(6):927−931. [CHEN Y G, QU W J, YANG N Y, et al. Metabolism and distribution of hecogenin in rats after intragastric infusion with saponins of Tribulus terristris L doi: 10.3969/j.issn.1001-6880.2006.06.009

    J]. Natural Product Research and Development,2006(6):927−931. doi: 10.3969/j.issn.1001-6880.2006.06.009
    [36] HE Y, HU Z Y, LI A R, et al. Recent advances in biotransformation of saponins[J]. Molecules,2019,24(13):2365. doi: 10.3390/molecules24132365
    [37] HIEERO J N, HERRERA T, FORNARI T, et al. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities[J]. Journal of Functional Foods,2018,40(12):484−497.
    [38] 刘晨希. 齐墩果酸衍生物HA-19在大鼠体内药代动力学及其组织分布研究[D]. 南京: 南京大学, 2018

    LIU C X. Pharmacokinetics and tissue distribution of oleanolic acid derivative HA-19 in rats[D]. Nanjing: Nanjing University, 2018.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  25
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回