Analysis of Quinoa Saponin Extract and Blood Constituents Based on UPLC-Q-Exactive-MS/MS
-
摘要: 运用超高效液相色谱-四级杆-静电场轨道离子阱联用质谱(UPLC-Q-Exactive-MS/MS)对藜麦皂苷提取物的主要化学成分及大鼠口服入血成分进行分析鉴定。采用Hypersil Gold VANQUISH C18色谱柱(2.1 mm×100 mm,1.8 μm),流动相为甲酸水-甲酸乙腈梯度洗脱,柱温30 ℃,分析时间35 min,流速0.3 mL·min−1。采用电喷雾离子源(ESI),正、负离子源,Full ms/dd-ms2模式检测。结果显示方法的回收率、基质效应、精密度和稳定性等均符合生物样品的测定要求。在藜麦皂苷提取物中共鉴定到15种皂苷,按苷元构型分为齐墩果酸型皂苷3种,常春藤型皂苷5种,商陆酸型皂苷6种,Serjanic acid型皂苷1种。选用雄性Sprague-Dawley(SD)大鼠,以175.5 mg·kg−1灌胃给予藜麦皂苷提取物,于给药后0、0.5、1、2、4 h下,眼眶取血,大鼠血浆以盐酸丁螺环酮为内标,用甲醇沉淀蛋白,离心,微孔滤膜过滤后进样分析。结果显示在入血成分中共检测到6种原型皂苷以及微量水解后的常春藤皂苷元和Serjanic acid苷元。通过对提取物组成成分及入血成分分析,共鉴定出藜麦皂苷中15个皂苷类化合物及裂解规律,发现了大鼠血浆入血成分相对含量变化情况。初步阐明了藜麦三萜皂苷的化学组成以及体内代谢特征,为藜麦进一步研究和开发应用提供理论依据。
-
关键词:
- 超高效液相色谱-四级杆-静电场轨道离子阱联用质谱 /
- 藜麦 /
- 皂苷提取物 /
- 代谢物
Abstract: The main chemical components of saponins extracted from quinoa and the components in the blood of rat after oral administration were analyzed and identified by ultra-performance liquid chromatography coupled with Q-Exactive mass spectrometry (UPLC-Q-Exactive-MS/MS). Hypersil Gold VANQUISH C18 column (2.1 mm×100 mm, 1.8 μm) was used. The mobile phase was formic acid water-formic acid acetonitrile gradient elution, the column temperature was 30 ℃, the analysis time was 35 min, the flow rate was 0.3 mL·min−1. Electrospray ion source (ESI), positive and negative ion sources and Full ms/dd-ms2 mode were used for detection. The results showed that the recovery rate, matrix effect, precision and stability of the method met the requirements of biological samples. A total of 15 saponins were identified in the saponin extract of quinoa, which were divided into three oleanolic acid saponin types, five hederagenin saponin types, six phytolaccagenic acid saponin types and one serjanic acid saponin type according to the configuration of aglycones. Male Sprague Dawley (SD) rats were selected as the experimental object, after intragastric administration of quinoa saponin extract at 175.5 mg·kg−1, at 0, 0.5, 1, 2 and 4 hours after administration, blood was taken from the orbit, the plasma of rats took buspirone hydrochloride as the internal standard, precipitated protein with methanol, centrifuged, filtered by microporous membrane, and then injected for analysis. The results showed that six prototype saponins and trace hydrolyzed hederagenin and serjanic acid glycosides were detected in the blood components of rat plasma. Through the analysis of the components of the extract and the components entering the blood, 15 saponins in quinoa saponins were identified and their cleavage laws were found, and the changes in the relative contents of the components into the blood of rat plasma were found. The chemical composition and metabolic characteristics of triterpenoid saponins in quinoa were preliminaries elucidated, which provided a theoretical basis for further research and application of quinoa. -
表 1 稳定性、精密度、重复性和回收率结果
Table 1. Results of stability, precision, repeatability and recovery
对照品 稳定性(n=6) 精密度(n=6) 重复性(n=6) 回收率(n=6) As As/Ai RSD(%) As As/Ai RSD(%) As As/Ai RSD(%) 回收率 平均值(%) RSD(%) 常春藤皂苷元 65276793 0.6509051 5.13% 58776618 0.5860888 8.17 55589876 0.5543124 4.87 108.35 106.38 7.32 68449264 0.7079094 54238415 0.5609393 57209525 0.5916668 105.68 71622412 0.6908903 69137173 0.6669170 62144197 0.5994607 108.35 36914345 0.7173293 28240396 0.5487748 29428614 0.5718646 106.92 66643096 0.6265274 56605792 0.5321644 56595046 0.5320633 103.65 68784785 0.6893669 58026145 0.5815429 53844778 0.5396369 105.33 齐墩果酸 81124476 0.8089297 7.22% 117086024 1.1675190 9.26 98908215 0.9862596 8.56 88.68 91.36 8.63 71172099 0.7360692 102842673 1.0636096 91812677 0.9495362 92.25 88617222 0.8548272 125210202 1.2078136 94167436 0.9083661 89.51 39899715 0.7753418 53468272 1.0390096 45216655 0.8786620 89.37 96098748 0.9034470 103893203 0.9767245 84544198 0.7948199 94.59 80677821 0.8085600 96340014 0.9655278 80717047 0.8089531 93.81 注:As:待测物峰面积;Ai:内标物峰面积。 表 2 UPLC-Q-Exactive-MS/MS鉴定藜麦三萜皂苷类成分的质谱数据
Table 2. Identification of triterpenoid saponins from quinoa by UPLC-Q-Exactive-MS/MS
编号 化合物鉴定 化学式 正离子模式[M+H]+ 保留时间(min) dd-MS2扫描模式下碎片离子(m/z) Ⅰ Ⅱ Ⅲ Ⅳ 1 Hederagenin 3-O-[α-L-arabinopyranosyl-(1,3)-β-D-glucuronopyranosyl]-28-O-β-D-glucopyranoside
常春藤皂苷元3-O-[α-L-吡喃阿拉伯糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷C47H76O18 929.51093 8.52 767.45898 635.41531 473.36304 2 Phytolaccagenic acid 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside
商陆酸3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷C42H66O15 811.44692 8.79 649.39771 517.35339 3 Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,4)-β-D-glucopyranosyl-(1,4)-β-D-glucopyranosyl]-28-O-β-D-glucopyranoside
商陆酸3-O-[β-D-吡喃葡萄糖-(1,4)-β-D-吡喃葡萄糖-(1,4)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷C55H88O26 1165.56128 9.12 1003.51030 841.45740 679.40479 517.35272 4 Phytolaccagenic acid 3-O-[β-D-galactopyranosyl-(1,3)-β-D-glucopyranosyl]-28-O-β-D-glucopyranoside
商陆酸3-O-[β-D-吡喃半乳糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷C49H78O21 1003.51044 9.47 841.45624 679.40515 517.35291 5 Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-β-D-galactopyranosyl]-28-O-β-D-glucopyranoside
商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-β-D-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷C49H78O21 1003.51013 9.86 841.45844 679.40558 517.35321 6 Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
商陆酸3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷C54H86O25 1135.55347 10.29 973.50056 811.44745 649.39423 517.35278 7 Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷C48H76O20 973.50055 11.05 811.44836 649.39435 517.35333 8 Hederagenin 3-O-[β-D-glucopyranosyl-(1,3)-α-L-galactopyranosyl]-28-O-β-D-glucopyranoside
常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷C48H78O19 959.51984 11.27 797.46783 635.41577 473.36346 9 Hederagenin 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷C47H76O18 929.51099 11.73 767.45789 605.40521 473.36298 10 Hederagenin 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷C53H86O23 1091.56128 12.05 929.5116 767.45801 605.40508 473.36319 11 Hederagenin 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside
常春藤皂苷元3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷C41H66O13 767.45764 12.35 605.40472 473.36237 12 Oleanolic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
齐墩果酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷C47H76O17 913.51752 12.48 751.46002 589.40045 457.36682 13 Serjanic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
Serjanic acid 3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷C48H76O19 957.50568 13.41 795.45209 633.39984 501.35756 14 Oleanolic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside
齐墩果酸3-O-β-D-吡喃葡萄糖-28-O-β-D-吡喃葡萄糖苷C42H66O14 795.45297 13.44 633.39948 457.36593 15 Oleanolic acid 3-O-[α-L-arabinopyranosyl-(1,3)-β-D-glucuronopyranosyl]-28-O-β-D-glucopyranoside
齐墩果酸3-O-[α-L-吡喃阿拉伯糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷C47H74O18 927.49304 14.02 765.44299 633.39995 457.36887 表 3 大鼠血浆入血成分相对峰面积
Table 3. Relative peak area of rat plasma entry components
编号 化合物鉴定 化学式 模式[M-H]− 保留时间tR(min) 相对峰面积(As/Ai) 0.5 h 1 h 2 h 4 h 2 Phytolaccagenic acid 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside
商陆酸3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷C42H66O15 809.43289 11.27 0.17098±
0.028660.14143±
0.056080.14780±
0.041690.04774 5 Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-β-D-galactopyranosyl]-28-O-β-D-glucopyranoside
商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-β-D-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷C49H78O21 1001.49628 9.88 0.12522±
0.020670.07786±
0.001960.03245±
0.008256 Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
商陆酸3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷C54H86O25 1133.53854 10.28 0.12859±
0.039490.05083±
0.001750.00794±
0.005637 Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷C48H76O20 971.48572 10.34 0.10510±
0.017930.08419±
0.031610.04042±
0.012530.03210 10 Hederagenin 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷C53H86O23 1089.54871 11.42 0.09150±
0.005130.04665±
0.002430.05090±
0.0200814 Oleanolic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside
齐墩果酸3-O-β-D-吡喃葡萄糖-28-O-β-D-吡喃葡萄糖苷C42H66O14 793.43798 12.69 0.17367±
0.021330.17086±
0.041700.09452±
0.01630 -
[1] 胡一晨, 赵钢, 秦培友, 等. 藜麦活性成分研究进展[J]. 作物学报,2018,44(11):1579−1591. [HU Y C, ZHAO G, QIN P Y, et al. Research progress on bioactive components of quinoa (Chenopodium quinoa Willd.)[J]. Acta Agronomica Sinica,2018,44(11):1579−1591. doi: 10.3724/SP.J.1006.2018.01579 [2] 王龙飞, 王新伟, 赵仁勇. 藜麦蛋白的特点、性质及提取的研究进展[J]. 食品工业,2017,38(7):255−258. [WANG L F, WANG X W, ZHAO R Y. A review of characteristic, properties and extraction of quinoa protein[J]. The Food Industry,2017,38(7):255−258. [3] 黄金. 基于藜麦营养及功能成分的健康食品研发[D]. 贵阳: 贵州大学, 2017HUANG J. The research of health food on the based of the quinoa nutritional and functional ingredient[D]. Guiyang: Guizhou University, 2017. [4] 李萍, 罗强, 金鑫, 等. 藜麦皂苷的提取及其酪氨酸酶抑制活性[J]. 现代食品科技,2021,37(5):196−202,129. [LI P, LUO Q, JIN X, et al. Separation of saponins from Chenopodium quinoa and its tyrosinase inhibitory activities[J]. Modern Food Science and Technology,2021,37(5):196−202,129. doi: 10.13982/j.mfst.1673-9078.2021.5.0931 [5] 魏爱春, 杨修仕, 么杨, 等. 藜麦营养功能成分及生物活性研究进展[J]. 食品科学,2015,36(15):272−276. [WEI A C, YANG X S, YAO Y, et al. Progress in research on nutritional and functional components and bioactivity of quinoa (Chenopodium quinoa Willd.)[J]. Food Science,2015,36(15):272−276. doi: 10.7506/spkx1002-6630-201515050 [6] PALOMBINI S V, CLAUS T, MARUYAMA S A, et al. Evaluation of nutritional compounds in new amaranth and quinoa cultivars[J]. Food Science and Technology,2013,33(2):339−344. doi: 10.1590/S0101-20612013005000051 [7] MERILLON J M, RAMAWAT K G. Co-Evolution of secondary metabolites[M]. Berlin: Springer, 2019. [8] MADL T, STERK H, MITTELBACH M, et al. Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa[J]. Journal of the American Society for Mass Spectrometry,2006,17(6):795−806. doi: 10.1016/j.jasms.2006.02.013 [9] 张剑峰, 张丹参. 三七总皂苷药理作用研究进展[J]. 医学综述,2007,13(6):472−474. [ZHANG J F, ZHANG D S. Study advancement in pharmalcological actions of total saponins of panax notoginseseng[J]. Medical Recapitulate,2007,13(6):472−474. doi: 10.3969/j.issn.1006-2084.2007.06.032 [10] HAZZAM K E, HAFSA J, SOBEH M, et al. An insight into saponins from quinoa (Chenopodium quinoa Willd.): A review[J]. Molecules,2020,25(5):1059. doi: 10.3390/molecules25051059 [11] 侯召华, 傅茂润, 张威毅, 等. 藜麦皂苷研究进展[J]. 食品安全质量检测学报,2018,9(19):5146−5152. [HOU Z H, FU M R, ZHANG W Y, et al. Research progress on saponins of quinoa (Chenopodium quinoa Willd.)[J]. Journal of Food Safety and Quality,2018,9(19):5146−5152. doi: 10.3969/j.issn.2095-0381.2018.19.023 [12] GIANNA V, MONTES J M, CALANDRI E L, et al. Impact of several variables on the microwave extraction of Chenopodium quinoa Willd saponins[J]. International Journal of Food Science and Technology,2012,47(8):1593−1597. doi: 10.1111/j.1365-2621.2012.03008.x [13] 杜静婷. 藜麦种皮皂苷的提取, 纯化, 抗氧化, 抑菌及皂苷元的成分鉴定[D]. 太原: 山西大学, 2017DU J T. Extraction, purification, antioxidant and antimicrobial of saponin in Chenopodium quinoa Willd. seed coat and component identification of aglycone[D]. Taiyuan: Shanxi University, 2017. [14] ODA K, MATSUDA H, MURAKAMI T, et al. Adjuvant and haemolytic activities of 47 saponins derived from medicinal and food plants[J]. Biological Chemistry,2000,381(1):67−74. [15] 张若洁. 芦笋皂苷的提取、纯化及其溶血活性研究[D]. 武汉: 华中农业大学, 2011ZHANG R J. Studies on the extraction, purification and hemocytolysis of asparagus saponins[D]. Wuhan: Huazhong Agricultural University, 2011. [16] LIANG Y, HAO H P, XIE L, et al. Development of a systematic approach to identify metabolites for herbal homologs based on liquid chromatography hybrid ion trap time-of-flight mass spectrometry: Gender-related difference in metabolism of Schisandra lignans in rats[J]. Drug Metabolism and Disposition: The Biological Fate of Chemicals,2010,38(10):1747−1759. doi: 10.1124/dmd.110.033373 [17] VERZA S G, SILVEIRA F, CIBULSKI S, et al. Immunoadjuvant activity, toxicity assays, and determination by UPLC/Q-TOF-MS of triterpenic saponins from Chenopodium quinoa seeds[J]. Journal of Agricultural and Food Chemistry,2012,60(12):3113. doi: 10.1021/jf205010c [18] GORAL I, WOJCIECHOWSKI K. Surface activity and foaming properties of saponin-rich plants extracts[J]. Advances in Colloid and Interface Science,2020,279:102145. doi: 10.1016/j.cis.2020.102145 [19] 王勇, 张宪臣, 华洪波, 等. 超高效液相色谱-四级杆/静电场轨道阱高分辨质谱联用快速测定水产品及干制水产品制品中的116种农药和24种生物毒素残留[J]. 现代食品科技,2022,38(1):371−389, 335. [WANG Y, ZHANG X C, HUA H B, et al. Simultaneous determination and confirmation of 116 pesticides residues and 24 biotoxins in aquatic product and dried aquatic product by ultra liquid chromatography coupled with quadrupole/exactive orbitrap mass spectrometry[J]. Modern Food Science and Technology,2022,38(1):371−389, 335. doi: 10.13982/j.mfst.1673-9078.2022.1.0441 [20] 国家药典委员会. 中国药典[M]. 北京: 中国医药科技出版社, 2020Chinese Pharmacopoeia Commission. Chinese pharmacopoeia[M]. Beijing: China Medical Science Press, 2020 [21] COLSON E, SAVARINO P, CLAEREBOUDT E, et al. Enhancing the membranolytic activity of Chenopodium quinoa saponins by fast microwave hydrolysis[J]. Molecules,2020,25(7):1731. doi: 10.3390/molecules25071731 [22] 傅俊. 牛膝三萜皂苷类成分定性分析及其体内外代谢初步研究[D]. 合肥: 安徽中医药大学, 2019FU J. Qualitative analysis of triterpenoid saponins from achyranthes bidentata and preliminary study on metabolism in vitro and in vivo[D]. Hefei: Anhui University of Traditional Chinese Medicine, 2019. [23] ZHU N Q, SHENG S Q, SANG S M, et al. Triterpene saponins from debittered quinoa (Chenopodium quinoa) seeds[J]. Journal of Agricultural and Food Chemistry,2002,50(4):865−867. doi: 10.1021/jf011002l [24] KULJANABHAGAVAD T, THONGPHASUK P, CHAMULITRAT W, et al. Triterpene saponins from Chenopodium quinoa Willd[J]. Phytochemistry,2008,69(9):1919−1926. doi: 10.1016/j.phytochem.2008.03.001 [25] WOLDEMICHAEL G M, WINK M. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa[J]. Journal of Agricultural and Food Chemistry,2001,49(5):2327−2332. doi: 10.1021/jf0013499 [26] MA W W, HEINSTEINP F, MCLAUGHLINC J L. Additional toxic, bitter saponins from the seeds of Chenopodium quinoa[J]. Journal of Natural Products,1989,52(5):1132−1135. doi: 10.1021/np50065a035 [27] DINI I, TENORE G C, SCHETTINO O, et al. New oleanane saponins in Chenopodium quinoa[J]. Journal of Agricultural and Food Chemistry,2001,49(8):3976−3981. doi: 10.1021/jf010361d [28] 黄晶. 基于UPLC/Q-TOF-MS技术的蜜炙黄芪大鼠体内代谢成分分析[D]. 广州: 广东药科大学, 2017HUANG J. Analysis of metabolites of honey-processed astragalus in rats based on UPLC/Q-TOF-MS[D]. Guangzhou: Guangdong Pharmaceutical University, 2017. [29] 张勐. 基于UPLC/Q-TOF技术的独一味化学成分与血清代谢物分析及抗炎活性研究[D]. 西宁: 青海师范大学, 2021ZHANG M. Analysis of chemical constituents and serum metabolites of Lamiophlomis rotata (Benth.) Kudo and their anti-inflammatory activities based on UPLC/Q-TOF Technology[D]. Xining: Qinghai Normal University, 2021. [30] 马保连, 李军茂, 何明珍, 等. 基于UHPLC-Q-TOF/MS的预知子入血成分及其体内代谢研究[J]. 中药新药与临床药理,2020,31(11):1350−1359. [MA B L, LI J M, HE M Z, et al. In vivo studies of the metabolites of Akebiae Fructus extract based on UHPLC-Q-TOF/MS method[J]. Traditional Chinese Drug Research and Clinical Pharmacology,2020,31(11):1350−1359. doi: 10.19378/j.issn.1003-9783.2020.11.013 [31] 顾东风, 翁建平, 鲁向锋. 中国健康生活方式预防心血管代谢疾病指南[J]. 中国循环杂志,2020,35(3):209−230. [GU D F, WENG J P, LU X F. Chinese guideline on healthy lifestyle to prevent cardiometabolic diseases[J]. Chinese Circulation Journal,2020,35(3):209−230. [32] 刘颖, 蔡伟, 李宁, 等. UHPLC-LTQ-Orbitrap MS结合高能碰撞诱导裂解技术快速鉴定大鼠口服麦冬甾体皂苷后的血中移行成分[J]. 药学学报,2016,51(11):1751−1758. [LIU Y, CAI W, LI N, et al. Rapid characterization of constituents absorbed into blood after oral administration of steroidal saponins from Radix ophiopogonis using UHPLC-LTQ-Orbitrap MS coupled with higher energy collision induced dissociation[J]. Acta Pharmaceutica Sinica,2016,51(11):1751−1758. [33] LIN B J, QI X, FANG L, et al. In vivo acute toxicity and mutagenic analysis of crude saponins from Chenopodium quinoa Willd husks[J]. RSC Advances,2021,11(8):4829−4841. doi: 10.1039/D0RA10170B [34] 宋登鹏, 王雪芹, 王永慧, 等. 柴胡皂苷类化合物体内代谢途径及其代谢产物的研究进展[J]. 药物评价研究,2019,42(7):1460−1465. [SONG D P, WANG X Q, WANG Y Q, et al. Research progress on metabolic pathways in vivo and their metabolites of saikosaponin[J]. Drug Evaluation Research,2019,42(7):1460−1465. [35] 陈原国, 瞿伟菁, 杨乃乙, 等. 蒺藜总皂苷灌胃大鼠体内海柯皂苷元的代谢与分布[J]. 天然产物研究与开发,2006(6):927−931. [CHEN Y G, QU W J, YANG N Y, et al. Metabolism and distribution of hecogenin in rats after intragastric infusion with saponins of Tribulus terristris L doi: 10.3969/j.issn.1001-6880.2006.06.009J]. Natural Product Research and Development,2006(6):927−931. doi: 10.3969/j.issn.1001-6880.2006.06.009 [36] HE Y, HU Z Y, LI A R, et al. Recent advances in biotransformation of saponins[J]. Molecules,2019,24(13):2365. doi: 10.3390/molecules24132365 [37] HIEERO J N, HERRERA T, FORNARI T, et al. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities[J]. Journal of Functional Foods,2018,40(12):484−497. [38] 刘晨希. 齐墩果酸衍生物HA-19在大鼠体内药代动力学及其组织分布研究[D]. 南京: 南京大学, 2018LIU C X. Pharmacokinetics and tissue distribution of oleanolic acid derivative HA-19 in rats[D]. Nanjing: Nanjing University, 2018.