Effect and Research Progress of Uric Acid Lowering Components in Food
-
摘要: 我国患高尿酸血症的人数逐年升高,而临床使用的降尿酸药物存在一定的副作用且治疗成本较高。研究发现摄入某些食品也可以降低尿酸水平,本文主要介绍存在于食品中的降尿酸物质,如黄酮类、酚酸类、生物碱类、皂苷类、多糖类等活性物质与益生菌的降尿酸功效及其作用机理的研究进展。黄酮类化合物降尿酸的作用主要在于抑制尿酸的生成与重吸收;在此基础上酚酸类化合物与生物碱类化合物还可促进尿酸排泄;对于苷类化合物降尿酸作用机理的研究处于初步阶段;由于多糖的代谢引起尿酸升高,多糖类化合物是否可作为降尿酸类功能食品的添加物质需要更多的药理研究来验证;益生菌类在降低尿酸水平的同时对肾功能损伤也有缓解作用,可作为降尿酸类功能产品的优势物质。Abstract: Every year more and more people is suffering from hyperuricemia in China, but the drugs used in clinical to lower uric acid have certain side effects and the treatment costs are relatively high. Reduction of uric acid can be achieved by consuming some foods. This paper introduces the research progress on the effects and mechanism of some ingredients in foods that reduce uric acid such as flavonoids, phenolic acids, alkaloids, saponins, polysaccharides and probiotic etc. The effect of flavonoids on lowering uric acid mainly lies in inhibiting the formation and reabsorption of uric acid. On this basis, phenolic acids and alkaloids can also promote uric acid excretion. The research on the mechanism of uric acid lowering by glycosides is in the preliminary stage. Whether polysaccharides can be used as additives in uric acid lowering functional foods needs to be verified by more pharmacological studies due to the increase of uric acid caused by polysaccharide metabolism. Probiotics can not only reduce uric acid level but also alleviate renal function injury, which can be used as the superior substances of uric acid lowering functional products.
-
Key words:
- hyperuricemia /
- uric acid lowering /
- flavonoids /
- phenolic acids
-
表 1 食品中降尿酸代表成分
Table 1. Representative components of uric acid lowering in food
名称 抑制XOD的IC50
(mol/L)调节尿酸转
运体的类型是否体外与体内
研究相结合芹菜素 8.63×10−5[94] ↓URAT1;
↓GLUT9是 木犀草素 4.79×10−5[95] ↑ABCG2 是 槲皮素 3.67×10−5[96] ↓GLUT9;
↑ABCG2是 绿茶多酚 − ↓URAT1;↑OAT1;↑OAT3 是 咖啡酸 4.26×10−5[52] ↓URAT1;↓GLUT9;↑ABCG2;↑OAT1 是 绿原酸 5.62×10−5[52] ↑OAT1;
↑ABCG2是 菊苣酸 − ↓GLUT9[97] 是 白藜芦醇 4.75×10−5[98] ↓URAT1 是 甜菜碱 − ↓URAT1;↓GLUT9;↑ABCG2;↑OAT1[99] 是 薯蓣皂苷 4.00×10−5[100] ↓URAT1;
↑OAT1是 茯苓多糖 − ↓URAT1;
↑OAT1[81]是 DM9218乳酸菌 − − − 注:URAT1:尿酸转运体1;GLUT9:葡萄糖转运蛋白9;ABCG2:三磷酸腺苷结合盒转运蛋白G2;OAT1:有机阴离子转运体1。 -
[1] 刘瑞尔, 严琴琴, 吴江, 等. 高尿酸血症对慢性肾脏病及合并症影响的研究进展[J]. 医学信息,2012,35(7):35−48,54. [LIU R E, YAN Q Q, WU J, et al. Effect of hyperuricemia on chronic kidney disease and its complications: A review[J]. Medical Information,2012,35(7):35−48,54. doi: 10.3969/j.issn.1006-1959.2012.07.030 [2] DAVIDE A, ARRIGO C, CLAUDIO B. The impact of uric acid and hyperuricemia on cardiovascular and renal systems[J]. Cardiology Clinics,2021,39(3):365−376. doi: 10.1016/j.ccl.2021.04.009 [3] 谢丽玲, 贺盼攀, 秦献辉, 等. 高尿酸血症治疗的研究进展[J]. 生物医学转化,2021,2(4):34−40. [XIE L L, HE P P, QIN X H, et al. Progress in the treatment of hyperuricemia[J]. Journal of Biomedical Transformation,2021,2(4):34−40. [4] VILLIGER A, SALA F, SUTER A, et al. In vitro inhibitory potential of cynara scolymus, silybum marianum, taraxacum officinale, and peumus boldus on key enzymes relevant to metabolic syndrome[J]. Phytomedicine,2015,22(1):138−144. doi: 10.1016/j.phymed.2014.11.015 [5] LI Y, ZHU B W, XIE Y Q, et al. Effect modification of hyperuricemia, cardiovascular risk, and age on chronic kidney disease in China: A cross-sectional study based on the China health and nutrition survey cohort[J]. Frontiers in Cardiovascular Medicine,2022,9:853917. doi: 10.3389/fcvm.2022.853917 [6] SI K, WEI C J, XU L L, et al. Hyperuricemia and the risk of heart failure: Pathophysiology and therapeutic implications[J]. Frontiers in Endocrinology,2021,12:770815. doi: 10.3389/fendo.2021.770815 [7] HITOSHI N, NORIKAZU M, IICHIRO S. Impact of hyperuricemia on chronic kidney disease and atherosclerotic cardiovascular disease[J]. Hypertension Research: Official Journal of the Japanese Society of Hypertension,2022,45(4):635−640. doi: 10.1038/s41440-021-00840-w [8] 黄清华, 严采馨, 林翠婷, 等. 降尿酸药物对高尿酸血症合并多系统并发症的影响研究进展[J]. 中国医院药学杂志,2022,42(9):957−960. [HUANG Q H, YAN C X, LIN C T, et al. Research progress on the effect of uric acid lowering drugs on hyperuricemia complicated with multisystem complications[J]. Chinese Journal of Hospital Pharmacy,2022,42(9):957−960. [9] 尹晓晨, 颜娜, 龙晓蕾, 等. 中草药提取物辅助降尿酸功效研究[J]. 实用预防医学,2022,29(1):51−54. [YIN X C, YAN N, LONG X L, et al. Effect of Chinese herbal extracts on lowering uric acid[J]. Practical Preventive Medicine,2022,29(1):51−54. [10] 邹家栋, 张苏州, 李彦科, 等. 车前子和车前草降尿酸作用比较研究[J]. 甘肃科技纵横,2021,50(8):109−111. [ZOU J D, ZHANG S Z, LI Y K, et al. Comparative study on lowering uric acid of plantaginis plantaginis and plantaginis plantaginis[J]. Gansu Science and Technology,2021,50(8):109−111. [11] 徐梦琪. 土茯苓降尿酸、镇痛和抗炎活性成分研究[D]. 无锡: 江南大学, 2021XU M Q. Study on the active components of reducing uric acid, analgesia and anti-inflammatory in soil poria tuckaea[D]. Wuxi: Jiangnan University, 2021. [12] ABHIJEET D, TEJ S, TUHINA N. Role of diet in hyperuricemia and gout[J]. Best Practice & Research. Clinical Rheumatology,2021,35(4):101723. [13] 朱清秀, 张红. 饮食干预对无症状高尿酸血症患者血尿酸、血脂的影响[J]. 世界最新医学信息文摘,2016,16(46):82,85. [ZHU Q X, ZHANG H. Effect of dietary intervention on serum uric acid and lipid in asymptomatic hyperuricemia patients[J]. World Latest Medical Information Abstracts,2016,16(46):82,85. [14] LI H L, LIU X J, LEE M H, et al. Vitamin C alleviates hyperuricemia nephropathy by reducing inflammation and fibrosis[J]. Journal of Food Science,2021,86(7):3265−3276. doi: 10.1111/1750-3841.15803 [15] 孙慧. 东北地区居民膳食纤维摄入与高尿酸血症的关系[D]. 沈阳: 中国医科大学, 2021SUN H. Relationship between dietary fiber intake and hyperuricemia in northeast China[D]. Shenyang: China Medical University, 2021. [16] 张华东, 乌仁图雅, 肖语雅, 等. 痛风及高尿酸血症水果辨食[J]. 中国中医药现代远程教育,2020,18(9):109−111. [ZHANG H D, WU R T Y, XIAO Y Y, et al. Fruit food differentiation in gout and hyperuricemia[J]. Chinese Modern Distance Education of Traditional Chinese Medicine,2020,18(9):109−111. [17] 董渭雪. 樱桃黄酮组分及降尿酸作用研究[D]. 汉中: 陕西理工大学, 2020DONG W X. Study on components of flavonoids in cherry and their effect on reducing uric acid[D]. Hanzhong: Shanxi University of Technology, 2020. [18] RAUL Z R, VIKTORIA K, JOSEPH R, et al. Dietary polyphenol intake in europe: The european prospective investigation into cancer and nutrition (EPIC) study[J]. European Journal of Nutrition,2016,55(4):1359−1375. doi: 10.1007/s00394-015-0950-x [19] YANG J I, WEN K M, CHENG K, et al. Recent research on flavonoids and their biomedical applications[J]. Current Medicinal Chemistry,2021,28(5):1042−1066. [20] 贠茜. 黄酮类化合物降尿酸机制的研究进展[J]. 广东化工,2018,45(5):132−133. [YUN Q. Research progress in the mechanism of flavonoids to reduce uric acid[J]. Guangdong Chemical Industry,2018,45(5):132−133. [21] 白莉, 刘广运, 张晓萍, 等. 牡丹花总黄酮对高尿酸血症大鼠降尿酸及肾脏保护作用[J/OL]. 中国实验方剂学杂志: 1−9 [2023-02-16]. doi: 10.13422/j.cnki.syfjx.20220905.BAI L, LIU G Y, ZHANG X P, et al. Effect of total flavonoids of peony on uric acid lowering and renal protection in hyperuricemia rats[J/OL]. Chinese Journal of Experimental Formulae: 1−9 [2023-02-16]. doi: 10.13422/j.cnki.syfjx.20220905. [22] 李雪岩, 刘洋, 刘芳, 等. 菊花黄酮类化合物与黄嘌呤氧化酶的药靶结合动力学研究[J]. 中国中药杂志,2021,46(7):1822−1831. [LI X Y, LIU Y, LIU F, et al. Study on target binding kinetics of chrysanthemum flavonoids with xanthine oxidase[J]. Chinese Journal of Traditional Chinese Medicine,2021,46(7):1822−1831. [23] BADVE S V, PASCOE E M, TIKU A, et al. Effects of allopurinol on the progression of chronic kidney disease[J]. N Engl J Med,2020,382:2504−2513. doi: 10.1056/NEJMoa1915833 [24] 徐魏, 罗非君. 芹菜素生物学活性及其机理研究进展[J]. 生命科学,2019,31(10):1077−1087. [XU W, LUO F J. Research progress in biological activity and mechanism of apigenin[J]. Life Science,2019,31(10):1077−1087. doi: 10.13376/j.cbls/2019133 [25] 于小聪. 芹菜中芹菜素提取及其生物活性研究[J]. 云南化工,2018,45(8):58−59. [YU X C. Study on extraction and bioactivity of apigenin from celery[J]. Yunnan Chemical,2018,45(8):58−59. [26] LI Y M, ZHAO Z, LUO J, et al. Apigenin ameliorates hyperuricemic nephropathy by inhibiting URAT1 and GLUT9 and relieving renal fibrosis via the wnt/β-catenin pathway[J]. Phytomedicine,2021,87:153585. doi: 10.1016/j.phymed.2021.153585 [27] ARSHAD M, REHMAN A U, MUHAMMAD I, et al. In vitro and in silico xanthine oxidase inhibitory activity of selected phytochemicals widely present in various edible plants[J]. Combinatorial Chemistry & High Throughput Screening,2020,23(9):917−930. [28] LEONG O K, RAHIMAH Z, LAN T M, et al. The influence of chemical composition of potent inhibitors in the hydrolyzed extracts of anti-hyperuricemic plants to their xanthine oxidase activities[J]. Journal of Ethnopharmacology,2021,278:114294. doi: 10.1016/j.jep.2021.114294 [29] 缪明星, 王星, 陆琰, 等. 芹菜素对氧嗪酸钾盐致高尿酸血症小鼠的降尿酸及肾保护作用机制研究[J]. 中国药房,2016,27(34):4794−4797. [MIAO M X, WANG X, LU Y, et al. Effect of apigenin on uric acid and renal protection in hyperuricemia mice induced by potassium oxazinic acid[J]. China Pharmacy,2016,27(34):4794−4797. [30] 胡庆苹, 魏鉴腾, 何海荣, 等. 19个品种油橄榄叶营养及活性成分分析评价[J]. 食品与发酵工业,2016,42(1):162−166. [HU Q P, WEI J T, HE H R, et al. Analysis and evaluation of nutrition and active ingredients in 19 varieties of olive leaves[J]. Food and Fermentation Industries,2016,42(1):162−166. [31] THEODOROS V. Extra virgin olive oil (EVOO): Quality, safety, authenticity, and adulteration[J]. Foods,2021,10(5):995. doi: 10.3390/foods10050995 [32] 郑恒光, 翁敏劼, 汤葆莎, 等. 橄榄油保健和疾病预防功效研究进展[J]. 食品科技,2019,44(10):196−199. [ZHENG H G, WENG M J, TANG B S, et al. Research progress on health care and disease prevention of olive oil[J]. Food Science and Technology,2019,44(10):196−199. [33] SERRELI G, DEIANA M, LIZARD G, et al. Extra virgin olive oil polyphenols: Modulation of cellular pathways related to oxidant species and inflammation in aging[J]. Cells,2020,9(2):478. doi: 10.3390/cells9020478 [34] 张炳森, 赵泽安, 李咏梅, 等. 橄榄果汁冻干粉的降尿酸与抗痛风作用[J]. 食品工业科技,2021,42(24):347−353. [ZHANG B S, ZHAO Z A, LI Y M, et al. Effects of freeze-dried olive juice powder on uric acid lowering and anti-gout[J]. Science and Technology of Food Industry,2021,42(24):347−353. [35] 余惠凡, 黄林生, 韩俊祥, 等. 木犀草素对高尿酸血症小鼠降尿酸作用及其机制研究[J]. 时珍国医国药,2021,32(5):1071−1074. [YU H F, HUANG L S, HAN J X, et al. Effect of luteolin on hyperuricemia in mice and its mechanism[J]. Sizhen Traditional Chinese Medicine and Traditional Chinese Medicine,2021,32(5):1071−1074. [36] 沈瑞明, 马丽辉, 郑颜萍. 木犀草素通过TLR/MyD88/NF-κB通路参与急性痛风性关节炎大鼠的抗炎作用[J]. 中南大学学报(医学版),2020,45(2):115−122. [SHEN R M, MA L H, ZHENG Y P. Luteolin is involved in anti-inflammatory effects of TLR/MyD88/NF-κB pathway in rats with acute gouty arthritis[J]. Journal of Central South University (Medicine),2020,45(2):115−122. [37] 沈瑞明, 李国铨, 钟良宝. 木犀草素对急性痛风性关节炎模型大鼠的抗炎作用研究[J]. 海南医学院学报,2019,25(17):1300−1303. [SHEN R M, LI G Q, ZHONG L B. Effects of luteolin on acute gouty arthritis in rats[J]. Journal of Hainan Medical University,2019,25(17):1300−1303. [38] 姚芳芳, 张锐, 傅瑞娟, 等. 槲皮素对高尿酸血症大鼠黄嘌呤氧化酶和腺苷脱氨酶活性的影响[J]. 郑州大学学报(医学版),2011,46(2):248−251. [YAO F F, ZHANG R, FU R J, et al. Effects of quercetin on xanthine oxidase and adenosine deaminase activity in hyperuricemia rats[J]. Journal of Zhengzhou University (Medical Science),2011,46(2):248−251. [39] 周启蒙, 赵晓悦, 王海港, 等. 茶黄素降低高尿酸血症小鼠血清尿酸的作用与机制探究[J]. 中国新药杂志,2018,27(14):1631−1638. [ZHOU Q M, ZHAO X Y, WANG H G, et al. Effect of theaflavins on serum uric acid in hyperuricemia mice[J]. China New Drug,2018,27(14):1631−1638. [40] MWANGI K S, ODUOR O S, KIPYEGON K R. Variation in levels of flavonols myricetin, quercetin and kaempferol—in kenyan tea with processed tea types and geographic location[J]. Open Journal of Applied Sciences,2021,11(6):736−749. doi: 10.4236/ojapps.2021.116054 [41] AZAR H, MARJAN R B, MACIEJ B. Quercetin and metabolic syndrome: A review[J]. Phytotherapy Research: PTR,2021,35(10):5352−5364. doi: 10.1002/ptr.7144 [42] 陈海青, 周璇, 王秀秀. 槲皮素治疗高尿酸血症的机制研究[J]. 光明中医,2019,34(9):1340−1344. [CHEN H Q, ZHOU X, WANG X X. Effect of quercetin on hyperuricemia[J]. Chinese Journal of Traditional Chinese Medicine,2019,34(9):1340−1344. doi: 10.3969/j.issn.1003-8914.2019.09.015 [43] 刘昕皓, 魏粉菊, 王学顺, 等. 多酚类化合物的生物活性研究进展[J]. 中国医药工业杂志,2021,52(4):471−483. [LIU X H, WEI F J, WANG X S, et al. Research progress in bioactivity of polyphenols[J]. Chinese Journal of Pharmaceutical Industry,2021,52(4):471−483. [44] FENG S M, WU S J, XIE F, et al. Natural compounds lower uric acid levels and hyperuricemia: Molecular mechanisms and prospective[J]. Trends in Food Science & Technology,2022,123:87−102. [45] CHEN G, TAN M L, LI K K, et al. Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice[J]. Journal of Ethnopharmacology,2015,175:14−20. doi: 10.1016/j.jep.2015.08.043 [46] ZHU H R, SONG D N, ZHAO X. Potential applications and preliminary mechanism of action of dietary polyphenols against hyperuricemia: A review[J]. Food Bioscience,2021,43:101297. doi: 10.1016/j.fbio.2021.101297 [47] ARSHAD M, ZHAO L, WANG C T, et al. Management of hyperuricemia through dietary polyphenols as a natural medicament: A comprehensive review[J]. Critical Reviews in Food Science and Nutrition,2019,59(9):1433−1455. doi: 10.1080/10408398.2017.1412939 [48] 洪鑫月, 吴健妹, 罗小乔, 等. 多酚化合物对黄嘌呤氧化酶抑制作用的研究进展[J]. 食品与机械,2021,37(2):1−8. [HONG X Y, WU J M, LUO X Q, et al. Research progress of polyphenol compounds inhibiting xanthine oxidase[J]. Food and Machinery,2021,37(2):1−8. [49] MAITY, SWASTIKA, KINRA, et al. Caffeic acid, a dietary polyphenol, as a promising candidate for combination therapy[J]. Chemical Papers,2022,76:1271−1283. doi: 10.1007/s11696-021-01947-7 [50] JIANG Y, LIN Y, HU Y J, et al. Caffeoylquinic acid derivatives rich extract from Gnaphalium pensylvanicum willd. ameliorates hyperuricemia and acute gouty arthritis in animal model[J]. BMC Complementary and Alternative Medicine,2017,17(1):320. doi: 10.1186/s12906-017-1834-9 [51] WAN Y, WANG F, ZOU B. Molecular mechanism underlying the ability of caffeic acid to decrease uric acid levels in hyperuricemia rats[J]. Journal of Functional Foods,2019,57:150−156. doi: 10.1016/j.jff.2019.03.038 [52] SCHIMITH F F Z, CRISTINA F F, ARAUJO, et al. Effects of the aqueous extract from Tabebuia roseoalba and phenolic acids on hyperuricemia and inflammation[J]. Evidence-based Complementary and Alternative Medicine: eCAM,2017,2017:2712108. [53] 聂雪凌, 唐鸿志, 许平. 绿原酸的检测及代谢途径研究进展[J]. 广州化工,2013,41(1):3−6. [NIE X L, TANG H Z, XU P. Progress in detection and metabolic pathway of chlorogenic acid[J]. Guangzhou Chemical Industry,2013,41(1):3−6. [54] 胡居吾. 蔓三七提取物对酵母膏和氧嗪酸钾致小鼠急性高尿酸血症治疗效果的研究[J]. 生物化工,2021,7(6):18−21. [HU J W. Study on the therapeutic effect of extracts of Panax notoginseng on acute hyperuricemia induced by yeast extract and potassium oxazinate[J]. Biochemical Engineering,2021,7(6):18−21. [55] 朱大帅. 薏仁中多酚类化合物降尿酸活性及其作用机制研究[D]. 广州: 华南理工大学, 2015ZHU D S. Study on the uric-lowering activity and mechanism of polyphenols from coix seed[D]. Guangzhou: South China University of Technology, 2015. [56] ZHOU X F, ZHANG B W, ZHAO X L, et al. Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis[J]. Food & Function,2021,12:5637−5649. [57] 王玉真, 高爽, 李凌军, 等. 菊苣酸生物活性及其药理作用研究进展[J]. 中国新药杂志,2020,29(15):1729−1733. [WANG Y Z, GAO S, LI L J, et al. Research progress on bioactivity and pharmacological action of chicory acid[J]. China New Drug Journal,2020,29(15):1729−1733. [58] PENG Y, SUN Q C, YEONHWA P. The bioactive effects of chicoric acid as a functional food ingredient[J]. Journal of Medicinal Food,2019,22(7):645−652. doi: 10.1089/jmf.2018.0211 [59] 朱春胜, 张冰, 林志健, 等. 菊苣降尿酸药效验证[J]. 中华中医药杂志,2018,33(11):4933−4936. [ZHU C S, ZHANG B, LIN Z J, et al. Study on the efficacy of chicory in reducing uric acid[J]. Chinese Journal of Traditional Chinese Medicine,2018,33(11):4933−4936. [60] ZHU C S, ZHANG B, LIN Z J, et al. Relationship between highperformance liquid chromatography fingerprints and uric acid-lowering activities of Cichorium intybus L[J]. Mol Basel Switz,2015,20(5):9455−9467. [61] 徐慧哲, 王雨, 毛秋月, 等. 菊苣化学成分及其防治尿酸相关代谢性疾病研究进展[J]. 世界中医药,2021,16(1):35−40. [XU H Z, WANG Y, MAO Q Y, et al. Research progress on chemical constituents of chicory and its prevention and treatment of uric acid related metabolic diseases[J]. World Traditional Chinese Medicine,2021,16(1):35−40. [62] BIAN M, WANG J, WANG Y, et al. Chicory ameliorates hyperuricemia via modulating gut microbiota and alleviating LPS/TLR4 axis in quail[J]. Biomedicine & Pharmacotherapy,2020,131:110719. [63] WANG Y, LIN Z J, ZHANG B, et al. Chicory (Cichorium intybus L.) inhibits renal reabsorption by regulating expression of urate transporters in fructose-induced hyperuricemia[J]. Journal of Traditional Chinese Medical Sciences,2019,6(1):84−94. doi: 10.1016/j.jtcms.2019.01.001 [64] 杨海荣, 李雪斌, 劳贞贤, 等. 白藜芦醇药理作用研究进展[J]. 中国老年学杂志,2020,40(16):3572−3575. [YANG H R, LI X B, LAO Z X, et al. Research progress on pharmacological effects of resveratrol[J]. Chinese Journal of Gerontology,2020,40(16):3572−3575. [65] YANG C, ZHANG H J, WANG K W. Resveratrol derivative constituents of Alniphyllum fortunei[J]. Chemistry of Natural Compounds,2022,58(1):90−93. doi: 10.1007/s10600-022-03603-2 [66] 李延姣, 张徽, 黎俊, 等. 白藜芦醇药理活性及作用机制研究进展[J]. 食品与药品,2021,23(3):284−288. [LI Y J, ZHANG H, LI J, et al. Advances in pharmacological activity and mechanism of resveratrol[J]. Food & Drug,2021,23(3):284−288. [67] QI J, SUN L Q, STEVEN Y, et al. A novel multi-hyphenated analytical method to simultaneously determine xanthine oxidase inhibitors and superoxide anion scavengers in natural products[J]. Analytica Chimica Acta,2017,984:124−133. doi: 10.1016/j.aca.2017.07.023 [68] 任红梅. 白藜芦醇改善高尿酸血症大鼠肝肾损伤机制的初步研究[D]. 南京: 南京大学, 2015REN H M. Preliminary study on the mechanism of resveratrol improving liver and kidney injury in hyperuricemia rats[D]. Nanjing: Nanjing University, 2015. [69] LEE C T, CHANG L C, LIU C W, et al. Negative correlation between serum uric acid and kidney URAT1 mRNA expression caused by resveratrol in rats[J]. Molecular Nutrition & Food Research,2017,61(10):1601030. [70] ZHANG X M, NIE Q, ZHANG Z M, et al. Resveratrol affects the expression of uric acid transporter by improving inflammation[J]. Molecular Medicine Reports,2021,24(2):1−9. [71] LIU Y L, PAN Y, WANG X, et al. Betaine reduces serum uric acid levels and improves kidney function in hyperuricemic mice[J]. Planta Medica,2014,80(1):39−47. doi: 10.1055/s-0033-1360127 [72] XU L Q, LIN G S, YU Q X, et al. Anti-hyperuricemic and nephroprotective effects of dihydroberberine in dotassium oxonateand hypoxanthine-induced hyperuricemic mice[J]. Frontiers in Pharmacology,2021,12:645879. doi: 10.3389/fphar.2021.645879 [73] SANG M M, DU G Y, JIA H, et al. Modeling and optimizing inhibitory activities of nelumbinis folium extract on xanthine oxidase using response surface methodology[J]. Journal of Pharmaceutical and Biomedical Analysis,2017,139:37−43. doi: 10.1016/j.jpba.2017.02.048 [74] SHI B B, CHEN J, BAO M F, et al. Alkaloids isolated from Tabernaemontana bufalina display xanthine oxidase inhibitory activity[J]. Phytochemistry,2019,166:112060. doi: 10.1016/j.phytochem.2019.112060 [75] 曹沛莹, 陈维佳, 宗颖, 等. 青风藤总生物碱提取工艺及抗痛风作用研究[J/OL]. 吉林农业大学学报: 1−12 [2022-05-24]. doi: 10.13327/j.jjlau.2020.5628.CAO P Y, CHEN W J, ZONG Y, et al. Orientvine extraction technology of total alkaloid and anti gout effect research[J/OL]. Journal of Jilin Agricultural University: 1−12 [2022-05-24]. doi: 10.13327/j.jjlau.2020.5628. [76] 徐慧静. 海参活性成分对高尿酸血症的影响[D]. 青岛: 中国海洋大学, 2012XU H J. Effects of active ingredients from sea cucumber on hyperuricemia[D]. Qingdao: Ocean University of China, 2012. [77] 王爽, 金圣子, 刘云. 薯蓣皂苷对顺铂诱导急性肾损伤模型大鼠的保护作用[J/OL]. 中国兽医科学: 1−9 [2022-06-23]. doi: 10.16656/j.issn.1673-4696.2022.0142.WANG S, JIN S Z, LIU Y. Protective effect of diosgenin on acute kidney injury induced by cisplatin in rats[J]. Chinese Veterinary Science: 1−9 [2022-06-23]. doi: 10.16656/j.issn.1673-4696.2022.0142. [78] 谈谣. 多组学综合分析薯蓣皂苷对高尿酸血症小鼠的降尿酸机制[D]. 天津: 天津中医药大学, 2021TAN Y. Multiomics comprehensive analysis of the mechanism of diosgenin in reducing uric acid in hyperuricemia mice[D]. Tianjin: Tianjin University of Traditional Chinese Medicine, 2021. [79] 杨子明, 张利, 刘金磊, 等. 番茄总皂苷对小鼠高尿酸血症的调节作用[J/OL]. 广西植物: 1−9 [2022-05-24]. http://kns.cnki.net/kcms/detail/45.1134.Q.20210526.0838.004.htmlYANG Z M, ZHANG L, LIU J L, et al. Tomatoes total saponins of mice with high uric acid hematic disease adjust action[J/OL]. Guangxi Plants: 1−9 [2022-05-24]. http://kns.cnki.net/kcms/detail/45.1134.Q.20210526.0838.004.html. [80] 郭敏. 甘草多糖降尿酸作用及颗粒剂的研究[D]. 镇江: 江苏大学, 2018GUO M. Study on the uric acid lowering effect of Glycyrrhiza uralensis polysaccharides and granules[D]. Zhenjiang: Jiangsu University, 2018. [81] 邓耒娇, 家洁熙, 王沛, 等. 茯苓多糖对高尿酸血症大鼠肾小管转运体rURAT1、rOAT1和rOCT2表达的影响[J]. 西部中医药,2019,32(6):10−14. [DENG L J, YAN J X, WANG P, et al. Effect of Poria cocos polysaccharide on expression of renal tubule transporters rURAT1, rOAT1 and rOCT2 in hyperuricemia rats[J]. Western Chinese Medicine,2019,32(6):10−14. [82] WANG X Z, YUAN L Y, BAO Z J, et al. Screening of uric acid-lowering active components of corn silk polysaccharide and its targeted improvement on renal excretory dysfunction in hyperuricemia mice[J]. Journal of Functional Foods,2021,86:104698. doi: 10.1016/j.jff.2021.104698 [83] LI X Q, GAO X X, ZHANG H, et al. The anti-hyperuricemic effects of green alga Enteromorpha prolifera polysaccharide via regulation of the uric acid transporters in vivo[J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association,2021,158:112630. doi: 10.1016/j.fct.2021.112630 [84] 研究显示白参菌多糖具有减肥和降尿酸功效[J]. 食药用菌, 2022, 30 ( 1 ) : 52Studies show that polysaccharides from white ginseng have the effect of reducing weight and lowering uric acid[J]. Edible and Medicinal Fungi, 2022, 30 ( 1 ) : 52. [85] 邹琳, 冯凤琴. 食品中降尿酸活性物质及其作用机理研究进展[J]. 食品工业科技,2019,40(13):352−357,364. [ZOU L, FENG F Q. Research progress of uric-lowering active substances in food and their mechanism of action[J]. Science and Technology of Food Industry,2019,40(13):352−357,364. [86] 邓英, 何春阳, 唐艳, 等. 短乳杆菌DM9218对高果糖饮食诱导的小鼠高尿酸血症的缓解作用及机制研究[J]. 中国微生态学杂志,2017,29(12):1387−1390. [DENG Y, HE C Y, TANG Y, et al. Effects of Lactobacillus brevis DM9218 on hyperuricemia in mice induced by high fructose diet and its mechanism[J]. Chinese Journal of Microecology,2017,29(12):1387−1390. [87] LI M, YANG D B, LU M, et al. Screening and characterization of purine nucleoside degrading lactic acid bacteria isolated from Chinese sauerkraut and evaluation of the serum uric acid lowering effect in hyperuricemic rats[J]. PLoS One,2014,9(9):105577. doi: 10.1371/journal.pone.0105577 [88] GARCIA A F E, GONZAGA G, MUÑOZ-JIMÉNEZ I, et al. Probiotic supplements prevented oxonic acid-induced hyperuricemia and renal damage[J]. PLoS One,2018,13(8):e0202901. doi: 10.1371/journal.pone.0202901 [89] 肖源勋, 张从新, 曾鲜丽, 等. 益生菌对高尿酸血症肾功能损伤的疗效分析研究[J]. 中国全科医学,2020,23(11):1376−1382, 1388. [XIAO Y X, ZHANG C X, ZENG X L, et al. Effect of probiotics on renal function injury in hyperuricemia[J]. Chinese Journal of General Practice,2020,23(11):1376−1382, 1388. [90] YAMANAKA H, TANIGUCHI A, TSUBOI H, et al. Hypouricaemic effects of yoghurt containing Lactobacillus gasser PA-3 in patients with hyperuricaemia and/or gout: A ran domised, double-blind, placebo-controlled study[J]. Mod Rheumatol,2019,29(1):146−150. doi: 10.1080/14397595.2018.1442183 [91] LONG H Y, WU S L, ZHU W N, et al. Antihyperuricemic effect of liquiritigenin in potassium oxonate-induced hyperuricemic rats[J]. Biomedicine & Pharmacotherapy,2016,84:1930−1936. [92] LI L Z, TENG M Y, LIU Y G, et al. Anti-gouty arthritis and antihyperuricemia effects of sunflower (Helianthus annuus) head extract in gouty and hyperuricemia animal models[J]. Biomed Research International,2017:5852076. [93] HATAIKARN N, SUNEE S, LA C, et al. Vitamin D supplementation is associated with serum uric acid concentration in patients with prediabetes and hyperuricemia[J]. Journal of Clinical & Translational Endocrinology,2021,24:100255. [94] 叶素梅. 芹菜素对黄嘌呤氧化酶活性的抑制机理研究[J]. 食品研究与开发,2018,39(21):67−71. [YE S M. Inhibition mechanism of apigenin on xanthine oxidase activity[J]. Food Research and Development,2018,39(21):67−71. [95] 闫家凯. 木犀草素对黄嘌呤氧化酶、α-葡萄糖苷酶抑制机理的探讨[D]. 南昌: 南昌大学, 2014YAN J K. Study on the inhibitory mechanism of luteolin on xanthine oxidase and α-glucosidase[D]. Nanchang: Nanchang University, 2014. [96] 谢凯莉, 李昭华, 董先智, 等. 槲皮素抑制黄嘌呤氧化酶活性的研究进展[J]. 时珍国医国药,2019,30(9):2223−2225. [XIE K L, LI Z H, DONG X Z, et al. Research progress of quercetin inhibiting xanthine oxidase activity[J]. Shi Zhen Guoyao and Traditional Chinese Medicine,2019,30(9):2223−2225. [97] 邹丽娜, 王雨, 姜卓希, 等. 基于肾脏尿酸转运的中药降尿酸活性成分筛选及评价—以菊苣酸为例[J]. 世界中医药,2021,16(1):28−34. [ZOU L N, WANG Y, JIANNG Z X, et al. Screening and evaluation of uric-lowering active ingredients in traditional Chinese medicine based on renal uric acid transport: A case study of chicory acid[J]. World Chinese Medicine,2021,16(1):28−34. doi: 10.1186/s13020-021-00436-z [98] 刘顺, 李赫宇, 赵玲. 白藜芦醇降血尿酸、抗炎作用研究进展[J]. 药物评价研究,2016,39(2):304−307. [LIU S, LI H Y, ZHAO L. Research progress in reducing uric acid and anti-inflammatory effects of resveratrol[J]. Drug Evaluation Research,2016,39(2):304−307. [99] 刘杨柳. 甜菜碱对高尿酸血症小鼠肾损伤的保护作用及其机制研究[D]. 南京: 南京大学, 2013LIU Y L. Protective effect of betaine on renal injury in hyperuricemia mice and its mechanism[D]. Nanjing: Nanjing University, 2013. [100] ZHANG Y, JIN L J, LIU J C, et al. Effect and mechanism of dioscin from Dioscorea spongiosa on uric acid excretion in animal model of hyperuricemia[J]. Journal of Ethnopharmacology,2018,214:29−36. doi: 10.1016/j.jep.2017.12.004
计量
- 文章访问数: 58
- HTML全文浏览量: 32
- PDF下载量: 0
- 被引次数: 0