留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干热处理对藜麦全粉结构及混粉面团流变学特性的影响

周亚丽 游新勇 李晓龙 张坤朋 李安华 高靖雯 刘萍 朱梓瑜

周亚丽,游新勇,李晓龙,等. 干热处理对藜麦全粉结构及混粉面团流变学特性的影响[J]. 食品工业科技,2023,44(9):74−80. doi: 10.13386/j.issn1002-0306.2022060035
引用本文: 周亚丽,游新勇,李晓龙,等. 干热处理对藜麦全粉结构及混粉面团流变学特性的影响[J]. 食品工业科技,2023,44(9):74−80. doi: 10.13386/j.issn1002-0306.2022060035
ZHOU Yali, YOU Xinyong, LI Xiaolong, et al. Effect of Dry Heat Treatment on the Structure of Quinoa Flour and Rheological Properties of Dough[J]. Science and Technology of Food Industry, 2023, 44(9): 74−80. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060035
Citation: ZHOU Yali, YOU Xinyong, LI Xiaolong, et al. Effect of Dry Heat Treatment on the Structure of Quinoa Flour and Rheological Properties of Dough[J]. Science and Technology of Food Industry, 2023, 44(9): 74−80. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060035

干热处理对藜麦全粉结构及混粉面团流变学特性的影响

doi: 10.13386/j.issn1002-0306.2022060035
基金项目: 安阳工学院博士科研启动基金项目(BSJ2020019);河南省重点研发与推广专项(藜麦全粉挤压膨化加工关键技术及其功能食品研发:212102110335);基于学生深度参与为导向的田间试验与统计课程建设探索与实践(2020JGLX144)。
详细信息
    作者简介:

    周亚丽(1990−),女,博士,讲师,研究方向:农产品加工和天然产物的提取,E-mail:zyl@ayit.edu.cn

    通讯作者:

    游新勇(1982−),男,博士,讲师,研究方向:农产品加工、检测和天然产物的提取,E-mail:xinyong8206@163.com

  • 中图分类号: TS211.4

Effect of Dry Heat Treatment on the Structure of Quinoa Flour and Rheological Properties of Dough

  • 摘要: 本研究以藜麦全粉为原料,分别进行常温(对照)、110、130、150 ℃干热处理1 h;将不同处理的藜麦粉15%与小麦粉85%(w/w)混合制作面包,分析干热处理温度对藜麦粉结构、混粉面团粉质特性、拉伸特性及面包质构特性、体外消化活性的影响。结果表明:干热处理使藜麦粉颗粒表面的聚集物脱落并出现缺陷,并且随着处理温度的升高,聚集物脱落的程度增加。干热处理未改变藜麦粉的A型晶型结构。与添加常温藜麦粉的面团相比,添加110、130、150 ℃干热处理藜麦全粉混粉面团的吸水率和弱化度分别升高1.79%和43.75%、3.25%和104.17%、4.83%和125.00%;延伸度、最大拉伸阻力和拉伸阻力均呈下降趋势,拉伸比呈现先升高后降低的趋势。干热处理温度为110 ℃时,面包硬度降低1.82%、弹性增加4.51%,而其他处理使面包硬度增加、弹性降低。干热处理使藜麦面包RDS含量显著降低,SDS和RS含量显著增加(P<0.05)。该研究结果可为藜麦粉功能性食品的研发提供理论依据。

     

  • 图  不同干热处理温度的藜麦粉样品扫描电镜(SEM)图像

    注:Bck:常温藜麦全粉;B110:110 ℃干热处理1 h的藜麦全粉;B130:130 ℃干热处理1 h的藜麦全粉;B150:150 ℃干热处理1 h的藜麦全粉;图2~图4表1~表4同。

    Figure  1.  Scanning electron microscope (SEM) image of quinoa flour samples at different dry heat treatment temperature

    图  不同干热处理温度的藜麦粉样品X射线衍射图

    Figure  2.  X-ray diffraction patterns of quinoa flour samples at different dry heat treatment temperature

    图  不同干热处理温度的藜麦粉样品FT-IR光谱

    Figure  3.  FT-IR spectrum of quinoa flour samples at dry heat treatment temperature

    图  不同干热处理温度对面包硬度和弹性的影响

    注:图中不同小写字母表示差异显著(P<0.05)。

    Figure  4.  Effects of different dry heat treatment temperature on hardness and elasticity of quinoa bread

    表  1  不同干热处理温度的藜麦粉样品相对结晶度

    Table  1.   Relative crystallinity of quinoa flour samples at different dry heat treatment temperature

    BckB110B130B150
    相对结晶度(%)38.56±0.38d41.35±0.38c42.68±0.38ab43.21±0.38a
    注:同行不同小写字母表示差异显著P<0.05,表2同。
    下载: 导出CSV

    表  2  不同干热处理温度对混粉面团粉质特性的影响

    Table  2.   Effect of different dry heat treatment temperature on farinograph properties of mixed dough

    指标不同干热处理样品
    BckB110B130B150
    吸水率(%)61.50±0.46d62.60±0.23bc63.50±0.17ab64.47±0.18a
    形成时间(min)4.50±0.07a4.10±0.04ab3.20±0.05c2.40±0.08d
    稳定时间(min)14.60±0.33a12.20±0.39b9.50±0.25c7.60±0.19d
    弱化度(FU)48.00±1.33d69.00±1.36c98.00±2.58b108.00±3.88a
    下载: 导出CSV

    表  3  不同干热处理温度对混粉面团拉伸特性的影响

    Table  3.   Effect of different dry heat treatment temperature on extensograph properties of mixed dough

    指标醒发时间不同干热处理样品
    BckB110B130B150
    延伸度(mm)45 min128.33±4.63a114.33±6.36a108.0±3.21a100.33±2.03a
    90 min120±3.06ab108±2.52b98.33±1.45ab63.67±1.20c
    135 min98.67±1.76c87.67±2.33c80.33±1.48c73.67±1.86b
    最大拉伸阻力(EU)45 min650.33±7.14c629.33±1.41c600.67±9.1c474.33±7.70c
    90 min834.0±1.82b814.67±1.62b797±9.66b634.33±6.12ab
    135 min898±5.13a854.67±5.96a806.33±3.54a644.670±9.21a
    拉伸阻力(EU)45 min486.33±3.48c465.33±4.33c441.67±6.64c397.67±2.17c
    90 min673.33±6.36a604.0±7.23b574.67±4.06b487.67±4.10b
    135 min567.00±3.79b625.33±4.91a696.0±9.07a502.67±6.64a
    拉伸比值45 min3.78±0.02c4.06±0.04c4.04±0.04c3.92±0.05c
    90 min5.71±0.02ab5.86±0.03b5.67±0.03b5.26±0.03b
    135 min5.79±0.01a8.66±0.03a7.18±0.02a6.71±0.05a
    注:同列不同小写字母表示差异显著(P<0.05),表4同。
    下载: 导出CSV

    表  4  不同干热处理温度对面包RDS、SDS和RS含量的影响

    Table  4.   Effects of different dry heat treatment temperature on the content of RDS, SDS and RS of quinoa bread

    样品RDS(%)SDS(%)RS(%)SDS+RS(%)
    Bck50.12±0.19a25.90±0.18d28.67±0.17d54.57±0.42d
    B11049.00±0.12ab27.71±0.14a30.50±0.12c58.21±0.32bc
    B13048.04±0.12bc26.34±0.23bc32.09±0.31b58.43±0.40b
    B15047.68±0.21d26.89±0.25b34.19±0.34a61.08±0.78a
    下载: 导出CSV
  • [1] SALVATORE M, ALEXIS M V, MARJO K, et al. Effects of different drying temperatures on the content of phenolic compounds and carotenoids in quinoa seeds (Chenopodium quinoa Wild.) from finland[J]. Journal of Food Composition & Analysis,2018,72:75−82.
    [2] LI G, ZHU F. Quinoa starch: Structures, properties, and applications[J]. Carbohydrate Polymers,2017,181:851−861.
    [3] GAWLIK-DZIKI U, DZIKI D, SWIECA M, et al. Bread enriched with Chenopodium quinoa leaves powder-The procedures for assessing the fortification efficiency[J]. LWT-Food Science and Technology,2015,62(2):1226−1234. doi: 10.1016/j.lwt.2015.02.007
    [4] 周亚丽, 崔利华, 陈建光, 等. 黑, 白藜麦皂苷的提取及其抗氧化活性的比较[J]. 食品工业科技,2021,42(11):328−334. [ZHOU Y L, CUI L H, CHEN J G, et al. Extraction of saponins from black and white quinoa and comparison of their antioxidant activities[J]. Science and Technology of Food Industry,2021,42(11):328−334.
    [5] BILATU A, RUTH B, LEGESSE S. Quinoa (Chenopodium quinoa, Wild.): As a potential ingredient of injera in Ethiopia[J]. Journal of Cereal Science,2018,82:170−174. doi: 10.1016/j.jcs.2018.06.009
    [6] SEZGIN A C, SANLIER N. A new generation plant for the conventional cuisine: Quinoa (Chenopodium quinoa Willd.)[J]. Trends in Food Science & Technology,2019,86:51−58.
    [7] ELIANA P, CHRISTIAN E Z, BARROS L, et al. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food[J]. Food Chemistry,2019,280:110−114. doi: 10.1016/j.foodchem.2018.12.068
    [8] XU X J, LUO Z G, YANG Q Y, et al. Effect of quinoa flour on baking performance, antioxidant properties and digestibility of wheat bread[J]. Food Chemistry,2019,294(OCT.1):87−95.
    [9] SHEWRY P R, HEY S J. The contribution of wheat to human diet and health[J]. Food Energy Security,2015,4(3):178−202. doi: 10.1002/fes3.64
    [10] ALLER E, ABETE I, ASTRUP A, et al. Starches, sugars and obesity[J]. Nutrients,2011,3(3):341−369. doi: 10.3390/nu3030341
    [11] SENAY S, MARIBEL O M, ALI M, et al. Chemical composition, digestibility and emulsification properties of octenyl succinic esters of various starches[J]. Food Research International,2015,75:41−49. doi: 10.1016/j.foodres.2015.05.034
    [12] CHUNG H J, QIANG L, HOOVER R. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches[J]. Carbohydrate Polymers,2009,75(3):436−447. doi: 10.1016/j.carbpol.2008.08.006
    [13] FLORES-SILVA P C, ROLDAN-CRUZ C A, CHAVEZ-ESQUIVEL G, et al. In vitro digestibility of ultrasound-treated corn starch[J]. Starch‐Starke,2017,69(9-10):1700040. doi: 10.1002/star.201700040
    [14] HUNG P V, HUONG N, PHI N, et al. Physicochemical characteristics and in vitro digestibility of potato and cassava starches under organic acid and heat-moisture treatments[J]. International Journal of Biological Macromolecules,2017,95:299−305.
    [15] SUN Q, GONG M, LI Y et al. Effect of dry heat treatment on the physicochemical properties and structure of proso millet flour and starch[J]. Carbohydr Polym,2014,110:128−134. doi: 10.1016/j.carbpol.2014.03.090
    [16] OH I K, YOUNG B I, GYU L H. Effect of dry heat treatment on physical property and in vitro starch digestibility of high amylose rice starch[J]. International Journal of Biological Macromolecules,2018,108:568−575. doi: 10.1016/j.ijbiomac.2017.11.180
    [17] PRABA K S, DIVYA P, USHA A. Effect of dry heat treatment on the development of resistant starch in rice (Oryza sativa) and barnyard millet (Echinochloa furmantacea)[J]. Journal of Food Processing & Preservation,2019,43(7):e13965.1−e13965.7.
    [18] LIU K, HAO Y, CHEN Y, et al. Effects of dry heat treatment on the structure and physicochemical properties of waxy potato starch[J]. International Journal of Biological Macromolecules,2019,132:1044−1050. doi: 10.1016/j.ijbiomac.2019.03.146
    [19] ZHOU Y L, CUI L H, YOU X Y, et al. Effects of repeated and continuous dry heat treatments on the physicochemical and structural properties of quinoa starch[J]. Food Hydrocolloids,2020,113:106532.
    [20] SUDHA M L, SOUMYA C, PRABHASANKAR P. Use of dry-moist heat effects to improve the functionality, immunogenicity of whole wheat flour and its application in bread making[J]. Journal of Cereal Science,2016,69:313−320. doi: 10.1016/j.jcs.2016.04.010
    [21] PEREZ I C, MU T H, ZHANG M, et al. Effect of heat treatment to sweet potato flour on dough properties and characteristics of sweet potato-wheat bread[J]. Food Science and Technology International,2017,23:708−715. doi: 10.1177/1082013217719006
    [22] XU J, ZHANG W, ADHIKARI K, et al. Determination of volatile compounds in heat-treated straight-grade flours from normal and waxy wheats[J]. Journal of Cereal Science,2017,75:77−83. doi: 10.1016/j.jcs.2017.03.018
    [23] WANG M, WU Y, LIU Y, et al. Effect of ultrasonic and microwave dual-treatment on the physicochemical properties of chestnut starch[J]. Polymers,2020,12(8):1718. doi: 10.3390/polym12081718
    [24] 梁霞, 孟婷婷, 周柏玲, 等. 藜麦-小麦粉的流变学特性及其面条研制[J]. 现代食品科技,2020,36(7):184−192. [LIANG X, MENG T T, ZHOU B L, et al. Rheological properties of quinoa-wheat flour and development of its noodles[J]. Modern Food Science and Technology,2020,36(7):184−192.
    [25] ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition,1992,46:S33−S50.
    [26] GONZÁLEZ M, VERNON-CARTER E J, ALVAREZ-RAMIREZ J, et al. Effects of dry heat treatment temperature on the structure of wheat flour and starch in vitro digestibility of bread[J]. International Journal of Biological Macromolecules,2021,166:1439−1447. doi: 10.1016/j.ijbiomac.2020.11.023
    [27] 吴昊. 反复/连续干热处理对不同晶型淀粉结构及理化特性的影响[D]. 杨凌: 西北农林科技大学, 2019

    WU H. Effect of repeated/continuous dry heat treatments on structural and physicochemical properties of different crystal types of starches[D]. Yangling: Northwest A&F University, 2019
    [28] YING D Y, HLAING M M, LERISSON J, et al. Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace[J]. Food Research International,2017,100(1):665−673.
    [29] 王伟玲. 干热加工对小麦粉的性质影响及其机制探讨[D]. 合肥: 合肥工业大学, 2020

    WANG W L. Properties of dry-heated wheat flour and its mechanism[D]. Hefei: Hefei University of Technology, 2020
    [30] CONTRERAS-JIMENEZ B, TORRES-VARGAS O L, RODRIGUEZ-GARCIA M E. Physicochemical characterization of quinoa (Chenopodium quinoa) flour and isolated starch[J]. Food Chemistry,2019,298(15):124982.1−124982.7.
    [31] 杜文娟, 吕静, 申瑞玲, 等. 小米粉对面团流变学特性的影响[J]. 粮食与油脂,2016,29(4):33−36. [DU W J, LÜ J, SHEN R L, et al. Effects of millet flour on the rheological properties of dough[J]. Cereals and Oils,2016,29(4):33−36. doi: 10.3969/j.issn.1008-9578.2016.04.010
    [32] 金鑫. 南方馒头品质评价、原料选择及工艺研究[D]. 长沙: 湖南农业大学, 2020

    JIN X. Study on quality evaluation, wheat flour selection and processing of southern-style steamed bread[D]. Changsha: Hunan Agricultural University, 2020
    [33] LIU K, ZHANG B, CHEN L, et al. Hierarchical structure and physicochemical properties of highland barley starch following heat moisture treatment[J]. Food Chemistry,2019,271:102−108. doi: 10.1016/j.foodchem.2018.07.193
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  27
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-05
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回