Effect of Dry Heat Treatment on the Structure of Quinoa Flour and Rheological Properties of Dough
-
摘要: 本研究以藜麦全粉为原料,分别进行常温(对照)、110、130、150 ℃干热处理1 h;将不同处理的藜麦粉15%与小麦粉85%(w/w)混合制作面包,分析干热处理温度对藜麦粉结构、混粉面团粉质特性、拉伸特性及面包质构特性、体外消化活性的影响。结果表明:干热处理使藜麦粉颗粒表面的聚集物脱落并出现缺陷,并且随着处理温度的升高,聚集物脱落的程度增加。干热处理未改变藜麦粉的A型晶型结构。与添加常温藜麦粉的面团相比,添加110、130、150 ℃干热处理藜麦全粉混粉面团的吸水率和弱化度分别升高1.79%和43.75%、3.25%和104.17%、4.83%和125.00%;延伸度、最大拉伸阻力和拉伸阻力均呈下降趋势,拉伸比呈现先升高后降低的趋势。干热处理温度为110 ℃时,面包硬度降低1.82%、弹性增加4.51%,而其他处理使面包硬度增加、弹性降低。干热处理使藜麦面包RDS含量显著降低,SDS和RS含量显著增加(P<0.05)。该研究结果可为藜麦粉功能性食品的研发提供理论依据。Abstract: Quinoa flour was subjected to dry heat treatment at room temperature (for control), 110, 130 and 150 ℃ for 1 h, respectively, and different treatments quinoa flour 15% and wheat flour 85% (w/w) were mixed to make bread, the effects of dry heat treatment temperature on the structure of quinoa flour, powder properties and tensile properties of the mixed flour dough as well as textural properties and in vitro digestive activity of the bread were analyzed. The results showed that the dry heat treatment caused the shedding of aggregates on the quinoa flour particles surface and caused defects, meanwhile the shedding degree of aggregates increased with the increase of treatment temperature. While, the crystal type of quinoa flour was not change and remained A-type after dry heat treatment. Compared with control, the water absorption and weakness of the dough that added quinoa flour treated with 110, 130 and 150 ℃ increased by 1.79% and 43.75%, 3.25% and 104.17%, 4.83% and 125.00%, respectively. Elongation, maximum tensile resistance and tensile resistance decreased gradually, and the tensile ratio increased first and then decreased. In addition, the bread hardness decreased by 1.82% and elasticity increased by 4.51% at 110 °C, while the other treatments increased the hardness and decreased the elasticity of quinoa-bread. Meanwhile, the dry heat treatment significantly decreased the RDS content and increased the SDS and RS content of quinoa-bread (P<0.05). This study can provide a theoretical basis for the development of functional foods from quinoa flour.
-
Key words:
- quinoa flour /
- dry heat treatment /
- bread /
- structure /
- quality
-
表 1 不同干热处理温度的藜麦粉样品相对结晶度
Table 1. Relative crystallinity of quinoa flour samples at different dry heat treatment temperature
Bck B110 B130 B150 相对结晶度(%) 38.56±0.38d 41.35±0.38c 42.68±0.38ab 43.21±0.38a 注:同行不同小写字母表示差异显著P<0.05,表2同。 表 2 不同干热处理温度对混粉面团粉质特性的影响
Table 2. Effect of different dry heat treatment temperature on farinograph properties of mixed dough
指标 不同干热处理样品 Bck B110 B130 B150 吸水率(%) 61.50±0.46d 62.60±0.23bc 63.50±0.17ab 64.47±0.18a 形成时间(min) 4.50±0.07a 4.10±0.04ab 3.20±0.05c 2.40±0.08d 稳定时间(min) 14.60±0.33a 12.20±0.39b 9.50±0.25c 7.60±0.19d 弱化度(FU) 48.00±1.33d 69.00±1.36c 98.00±2.58b 108.00±3.88a 表 3 不同干热处理温度对混粉面团拉伸特性的影响
Table 3. Effect of different dry heat treatment temperature on extensograph properties of mixed dough
指标 醒发时间 不同干热处理样品 Bck B110 B130 B150 延伸度(mm) 45 min 128.33±4.63a 114.33±6.36a 108.0±3.21a 100.33±2.03a 90 min 120±3.06ab 108±2.52b 98.33±1.45ab 63.67±1.20c 135 min 98.67±1.76c 87.67±2.33c 80.33±1.48c 73.67±1.86b 最大拉伸阻力(EU) 45 min 650.33±7.14c 629.33±1.41c 600.67±9.1c 474.33±7.70c 90 min 834.0±1.82b 814.67±1.62b 797±9.66b 634.33±6.12ab 135 min 898±5.13a 854.67±5.96a 806.33±3.54a 644.670±9.21a 拉伸阻力(EU) 45 min 486.33±3.48c 465.33±4.33c 441.67±6.64c 397.67±2.17c 90 min 673.33±6.36a 604.0±7.23b 574.67±4.06b 487.67±4.10b 135 min 567.00±3.79b 625.33±4.91a 696.0±9.07a 502.67±6.64a 拉伸比值 45 min 3.78±0.02c 4.06±0.04c 4.04±0.04c 3.92±0.05c 90 min 5.71±0.02ab 5.86±0.03b 5.67±0.03b 5.26±0.03b 135 min 5.79±0.01a 8.66±0.03a 7.18±0.02a 6.71±0.05a 注:同列不同小写字母表示差异显著(P<0.05),表4同。 表 4 不同干热处理温度对面包RDS、SDS和RS含量的影响
Table 4. Effects of different dry heat treatment temperature on the content of RDS, SDS and RS of quinoa bread
样品 RDS(%) SDS(%) RS(%) SDS+RS(%) Bck 50.12±0.19a 25.90±0.18d 28.67±0.17d 54.57±0.42d B110 49.00±0.12ab 27.71±0.14a 30.50±0.12c 58.21±0.32bc B130 48.04±0.12bc 26.34±0.23bc 32.09±0.31b 58.43±0.40b B150 47.68±0.21d 26.89±0.25b 34.19±0.34a 61.08±0.78a -
[1] SALVATORE M, ALEXIS M V, MARJO K, et al. Effects of different drying temperatures on the content of phenolic compounds and carotenoids in quinoa seeds (Chenopodium quinoa Wild.) from finland[J]. Journal of Food Composition & Analysis,2018,72:75−82. [2] LI G, ZHU F. Quinoa starch: Structures, properties, and applications[J]. Carbohydrate Polymers,2017,181:851−861. [3] GAWLIK-DZIKI U, DZIKI D, SWIECA M, et al. Bread enriched with Chenopodium quinoa leaves powder-The procedures for assessing the fortification efficiency[J]. LWT-Food Science and Technology,2015,62(2):1226−1234. doi: 10.1016/j.lwt.2015.02.007 [4] 周亚丽, 崔利华, 陈建光, 等. 黑, 白藜麦皂苷的提取及其抗氧化活性的比较[J]. 食品工业科技,2021,42(11):328−334. [ZHOU Y L, CUI L H, CHEN J G, et al. Extraction of saponins from black and white quinoa and comparison of their antioxidant activities[J]. Science and Technology of Food Industry,2021,42(11):328−334. [5] BILATU A, RUTH B, LEGESSE S. Quinoa (Chenopodium quinoa, Wild.): As a potential ingredient of injera in Ethiopia[J]. Journal of Cereal Science,2018,82:170−174. doi: 10.1016/j.jcs.2018.06.009 [6] SEZGIN A C, SANLIER N. A new generation plant for the conventional cuisine: Quinoa (Chenopodium quinoa Willd.)[J]. Trends in Food Science & Technology,2019,86:51−58. [7] ELIANA P, CHRISTIAN E Z, BARROS L, et al. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food[J]. Food Chemistry,2019,280:110−114. doi: 10.1016/j.foodchem.2018.12.068 [8] XU X J, LUO Z G, YANG Q Y, et al. Effect of quinoa flour on baking performance, antioxidant properties and digestibility of wheat bread[J]. Food Chemistry,2019,294(OCT.1):87−95. [9] SHEWRY P R, HEY S J. The contribution of wheat to human diet and health[J]. Food Energy Security,2015,4(3):178−202. doi: 10.1002/fes3.64 [10] ALLER E, ABETE I, ASTRUP A, et al. Starches, sugars and obesity[J]. Nutrients,2011,3(3):341−369. doi: 10.3390/nu3030341 [11] SENAY S, MARIBEL O M, ALI M, et al. Chemical composition, digestibility and emulsification properties of octenyl succinic esters of various starches[J]. Food Research International,2015,75:41−49. doi: 10.1016/j.foodres.2015.05.034 [12] CHUNG H J, QIANG L, HOOVER R. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches[J]. Carbohydrate Polymers,2009,75(3):436−447. doi: 10.1016/j.carbpol.2008.08.006 [13] FLORES-SILVA P C, ROLDAN-CRUZ C A, CHAVEZ-ESQUIVEL G, et al. In vitro digestibility of ultrasound-treated corn starch[J]. Starch‐Starke,2017,69(9-10):1700040. doi: 10.1002/star.201700040 [14] HUNG P V, HUONG N, PHI N, et al. Physicochemical characteristics and in vitro digestibility of potato and cassava starches under organic acid and heat-moisture treatments[J]. International Journal of Biological Macromolecules,2017,95:299−305. [15] SUN Q, GONG M, LI Y et al. Effect of dry heat treatment on the physicochemical properties and structure of proso millet flour and starch[J]. Carbohydr Polym,2014,110:128−134. doi: 10.1016/j.carbpol.2014.03.090 [16] OH I K, YOUNG B I, GYU L H. Effect of dry heat treatment on physical property and in vitro starch digestibility of high amylose rice starch[J]. International Journal of Biological Macromolecules,2018,108:568−575. doi: 10.1016/j.ijbiomac.2017.11.180 [17] PRABA K S, DIVYA P, USHA A. Effect of dry heat treatment on the development of resistant starch in rice (Oryza sativa) and barnyard millet (Echinochloa furmantacea)[J]. Journal of Food Processing & Preservation,2019,43(7):e13965.1−e13965.7. [18] LIU K, HAO Y, CHEN Y, et al. Effects of dry heat treatment on the structure and physicochemical properties of waxy potato starch[J]. International Journal of Biological Macromolecules,2019,132:1044−1050. doi: 10.1016/j.ijbiomac.2019.03.146 [19] ZHOU Y L, CUI L H, YOU X Y, et al. Effects of repeated and continuous dry heat treatments on the physicochemical and structural properties of quinoa starch[J]. Food Hydrocolloids,2020,113:106532. [20] SUDHA M L, SOUMYA C, PRABHASANKAR P. Use of dry-moist heat effects to improve the functionality, immunogenicity of whole wheat flour and its application in bread making[J]. Journal of Cereal Science,2016,69:313−320. doi: 10.1016/j.jcs.2016.04.010 [21] PEREZ I C, MU T H, ZHANG M, et al. Effect of heat treatment to sweet potato flour on dough properties and characteristics of sweet potato-wheat bread[J]. Food Science and Technology International,2017,23:708−715. doi: 10.1177/1082013217719006 [22] XU J, ZHANG W, ADHIKARI K, et al. Determination of volatile compounds in heat-treated straight-grade flours from normal and waxy wheats[J]. Journal of Cereal Science,2017,75:77−83. doi: 10.1016/j.jcs.2017.03.018 [23] WANG M, WU Y, LIU Y, et al. Effect of ultrasonic and microwave dual-treatment on the physicochemical properties of chestnut starch[J]. Polymers,2020,12(8):1718. doi: 10.3390/polym12081718 [24] 梁霞, 孟婷婷, 周柏玲, 等. 藜麦-小麦粉的流变学特性及其面条研制[J]. 现代食品科技,2020,36(7):184−192. [LIANG X, MENG T T, ZHOU B L, et al. Rheological properties of quinoa-wheat flour and development of its noodles[J]. Modern Food Science and Technology,2020,36(7):184−192. [25] ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition,1992,46:S33−S50. [26] GONZÁLEZ M, VERNON-CARTER E J, ALVAREZ-RAMIREZ J, et al. Effects of dry heat treatment temperature on the structure of wheat flour and starch in vitro digestibility of bread[J]. International Journal of Biological Macromolecules,2021,166:1439−1447. doi: 10.1016/j.ijbiomac.2020.11.023 [27] 吴昊. 反复/连续干热处理对不同晶型淀粉结构及理化特性的影响[D]. 杨凌: 西北农林科技大学, 2019WU H. Effect of repeated/continuous dry heat treatments on structural and physicochemical properties of different crystal types of starches[D]. Yangling: Northwest A&F University, 2019 [28] YING D Y, HLAING M M, LERISSON J, et al. Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace[J]. Food Research International,2017,100(1):665−673. [29] 王伟玲. 干热加工对小麦粉的性质影响及其机制探讨[D]. 合肥: 合肥工业大学, 2020WANG W L. Properties of dry-heated wheat flour and its mechanism[D]. Hefei: Hefei University of Technology, 2020 [30] CONTRERAS-JIMENEZ B, TORRES-VARGAS O L, RODRIGUEZ-GARCIA M E. Physicochemical characterization of quinoa (Chenopodium quinoa) flour and isolated starch[J]. Food Chemistry,2019,298(15):124982.1−124982.7. [31] 杜文娟, 吕静, 申瑞玲, 等. 小米粉对面团流变学特性的影响[J]. 粮食与油脂,2016,29(4):33−36. [DU W J, LÜ J, SHEN R L, et al. Effects of millet flour on the rheological properties of dough[J]. Cereals and Oils,2016,29(4):33−36. doi: 10.3969/j.issn.1008-9578.2016.04.010 [32] 金鑫. 南方馒头品质评价、原料选择及工艺研究[D]. 长沙: 湖南农业大学, 2020JIN X. Study on quality evaluation, wheat flour selection and processing of southern-style steamed bread[D]. Changsha: Hunan Agricultural University, 2020 [33] LIU K, ZHANG B, CHEN L, et al. Hierarchical structure and physicochemical properties of highland barley starch following heat moisture treatment[J]. Food Chemistry,2019,271:102−108. doi: 10.1016/j.foodchem.2018.07.193