[1] |
SCHMID J. Recent insights in microbial exopolysaccharide biosynthesis and engineering strategies[J]. Current Opinion in Biotechnology,2018,53:130−136. doi: 10.1016/j.copbio.2018.01.005
|
[2] |
姜静, 郭尚旭, 张鑫, 等. 融合魏斯氏菌(Weissella confusa)XG-3的分离鉴定及其胞外多糖性质初步研究[J]. 黑龙江大学自然科学学报,2020,37(1):71−80. [JIANG J, GUO S X, ZHANG X, et al. Isolation and identification of exopolysaccharide-producing Weissella confusa XG-3 and primary characterization of its exopolysaccharide[J]. Journal of Natural Science of Heilongjiang University,2020,37(1):71−80.
|
[3] |
YAN J, BASSLER B L. Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms[J]. Cell Host & Microbe,2019,26(1):15−21.
|
[4] |
艾连中, 范艺周, 熊智强. 第二信使分子调控细菌胞外多糖生物合成研究进展[J]. 中国食品学报,2021,21(4):1−8. [AI L Z, FAN Y Z, XIONG Z Q. Advances in bacterial exopolysaccharide biosynthesis regulated by the second messenger molecule[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(4):1−8.
|
[5] |
KUNZ S, TRIBENSKY A, STEINCHEN W, et al. Cyclic di-GMP signaling in Bacillus subtilis is governed by direct interactions of diguanylate cyclases and cognate receptors[J]. Mbio,2020,11(2):e03122−19.
|
[6] |
RANA S, UPADHYAY L S B. Microbial exopolysaccharides: Synthesis pathways, types and their commercial applications[J]. International Journal of Biological Macromolecules,2020,157:577−583. doi: 10.1016/j.ijbiomac.2020.04.084
|
[7] |
ZHANG H, REN W, GUO Q, et al. Characterization of a yogurt-quality improving exopolysaccharide from Streptococcus thermophilus AR333[J]. Food Hydrocolloids,2018,81:220−228. doi: 10.1016/j.foodhyd.2017.12.017
|
[8] |
DAS S. Genetic regulation, biosynthesis and applications of extracellular polysaccharides of the biofilm matrix of bacteria[J]. Carbohydrate Polymers,2022,9(291):119536.
|
[9] |
CAI L, MA W, ZOU L, et al. Xanthomonas oryzae pv. oryzicola response regulator vemr is co-opted by the sensor kinase Chea for phosphorylation of multiple pathogenicity-related targets[J]. Frontiers in Microbiology,2022,13:928551. doi: 10.3389/fmicb.2022.928551
|
[10] |
HOMMA M, KOJIMA S. Roles of the second messenger c-di-GMP in bacteria: Focusing on the topics of flagellar regulation and Vibrio spp[J]. Genes to Cells,2022,27(3):157−172. doi: 10.1111/gtc.12921
|
[11] |
AMIKAM D, BENZIMAN M. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens[J]. Journal of Bacteriology,1989,171(12):6649−6655. doi: 10.1128/jb.171.12.6649-6655.1989
|
[12] |
路新枝, 刘湛军, 于文功. 环二鸟苷酸——新型的细菌第二信使[J]. 中国生物化学与分子生物学报,2009,25(5):400−406. [LU X Z, LIU Z J, YU W G. Cyclic diguanylate-new second messenger in bacteria[J]. Chinese Journal of Biochemistry Molecular Biology,2009,25(5):400−406.
|
[13] |
RICHTER A M, POSSLING A, MALYSHEVA N, et al. Local c-di-GMP signaling in the control of synthesis of the E. coli biofilm exopolysaccharide pEtN-cellulose[J]. Journal of Molecular Biology,2020,432(16):4576−4595. doi: 10.1016/j.jmb.2020.06.006
|
[14] |
RöMLING U, GALPERIN M Y, GOMELSKY M. Cyclic di-GMP: The first 25 years of a universal bacterial second messenger[J]. Microbiology and Molecular Biology Reviews,2013,77(1):1−52. doi: 10.1128/MMBR.00043-12
|
[15] |
PÉREZ-MENDOZA D, SANJUÁN J. Exploiting the commons: Cyclic diguanylate regulation of bacterial exopolysaccharide production[J]. Current Opinion in Microbiology,2016,4(30):3036−3043.
|
[16] |
RAMÍREZ-MATA A, LÓPEZ-LARA L I, XIQUI-VÁZQUEZ M L, et al. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense[J]. Research in Microbiology,2016,167(3):190−201. doi: 10.1016/j.resmic.2015.12.004
|
[17] |
HENGGE R. High-specificity local and global c-di-GMP signaling[J]. Trends in Microbiology,2021,29(11):993−1003. doi: 10.1016/j.tim.2021.02.003
|
[18] |
ORR M W, WEISS C A, SEVERIN G B, et al. A subset of exoribonucleases serve as degradative enzymes for pGpG in c-di-GMP signaling[J]. Journal of Bacteriology,2018,200(24):e00300−18.
|
[19] |
MONDS R D, NEWELL P D, GROSS R H, et al. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA[J]. Molecular Microbiology,2007,63(3):656−679.
|
[20] |
GALPERIN M Y, CHOU S H. Structural conservation and diversity of PilZ-related domains[J]. Journal of Bacteriology,2020,202(4):e00664−19.
|
[21] |
DUERIG A, ABEL S, FOLCHER M, et al. Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression[J]. Genes & Development,2009,23(1):93−104.
|
[22] |
VALENTINI M, FILLOUX A. Multiple roles of c-di-GMP signaling in bacterial pathogenesis[J]. Annual Review of Microbiology,2019,73(1):387−406. doi: 10.1146/annurev-micro-020518-115555
|
[23] |
AMIKAM D, GALPERIN M Y. PilZ domain is part of the bacterial c-di-GMP binding protein[J]. Bioinformatics,2006,22(1):3−6. doi: 10.1093/bioinformatics/bti739
|
[24] |
CHOU S-H, GALPERIN M Y. Diversity of cyclic di-GMP-binding proteins and mechanisms[J]. Journal of Bacteriology,2016,198(1):32−46. doi: 10.1128/JB.00333-15
|
[25] |
WHITNEY J C, WHITFIELD G B, MARMONT L S, et al. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa[J]. Journal of Biological Chemistry,2015,290(20):12451−12462. doi: 10.1074/jbc.M115.645051
|
[26] |
KRASTEVA P V, BERNAL-BAYARD J, TRAVIER L, et al. Insights into the structure and assembly of a bacterial cellulose secretion system[J]. Nature Communications,2017,8(1):1−10. doi: 10.1038/s41467-016-0009-6
|
[27] |
CHEANG Q W, XIN L, CHEA R Y F, et al. Emerging paradigms for PilZ domain-mediated c-di-GMP signaling[J]. Biochemical Society Transactions,2019,47(1):381−388. doi: 10.1042/BST20180543
|
[28] |
CONNER J G, ZAMORANO-SÁNCHEZ D, PARK J H, et al. The ins and outs of cyclic di-GMP signaling in Vibrio cholerae[J]. Current Opinion in Microbiology,2017,36:20−29. doi: 10.1016/j.mib.2017.01.002
|
[29] |
ARIZA-MATEOS A, NUTHANAKANTI A, SERGANOV A. Riboswitch mechanisms: New tricks for an old dog[J]. Biochemistry,2021,86(8):962−975.
|
[30] |
TAMAYO R, PRATT J T, CAMILLI A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis[J]. Annual Review of Microbiology,2007,61(1):131−148.
|
[31] |
SUDARSAN N, LEE E, WEINBERG Z, et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP[J]. Science,2008,321(5887):411−413. doi: 10.1126/science.1159519
|
[32] |
MCNERNEY M P, STYCZYNSKI M P. Small molecule signaling, regulation, and potential applications in cellular therapeutics[J]. Wiley Interdisciplinary Reviews: Systems Biology and Medicine,2018,10(2):e1405.
|
[33] |
ZHOU H, ZHENG C, SU J, et al. Characterization of a natural triple-tandem c-di-GMP riboswitch and application of the riboswitch-based dual-fluorescence reporter[J]. Scientific Reports,2016,6(1):1−13. doi: 10.1038/s41598-016-0001-8
|
[34] |
PURSLEY B R, MAIDEN M M, HSIEH M-L, et al. Cyclic di-GMP regulates TfoY in Vibrio cholerae to control motility by both transcriptional and posttranscriptional mechanisms[J]. Journal of Bacteriology,2018,200(7):e00578−17.
|
[35] |
PURIFICAÇÃO A D D, AZEVEDO N M D, ARAUJO G G D, et al. The world of cyclic dinucleotides in bacterial behavior[J]. Molecules,2020,25(10):2462−2503. doi: 10.3390/molecules25102462
|
[36] |
CHAN C, PAUL R, SAMORAY D, et al. Structural basis of activity and allosteric control of diguanylate cyclase[J]. Proceedings of the National Academy of Sciences,2004,101(49):17084−17089. doi: 10.1073/pnas.0406134101
|
[37] |
CHRISTEN B, CHRISTEN M, PAUL R, et al. Allosteric control of cyclic di-GMP signaling[J]. Journal of Biological Chemistry,2006,281(42):32015−32024. doi: 10.1016/S0021-9258(19)84115-7
|
[38] |
KRASTEVA P V, GIGLIO K M, SONDERMANN H. Sensing the messenger: The diverse ways that bacteria signal through c-di-GMP[J]. Protein Science: A Publication of the Protein Society,2012,21(7):929−948. doi: 10.1002/pro.2093
|
[39] |
LIU Y, LEE C, LI F, et al. A cyclic di-GMP network is present in Gram-positive Streptococcus and Gram-negative Proteus species[J]. ACS Infectious Diseases,2020,6(10):2672−2687. doi: 10.1021/acsinfecdis.0c00314
|
[40] |
ABIDI W, TORRES-SÁNCHEZ L, SIROY A, et al. Weaving of bacterial cellulose by the Bcs secretion systems[J]. FEMS Microbiology Reviews,2022,46(2):fuab051. doi: 10.1093/femsre/fuab051
|
[41] |
ZOUHIR S, ABIDI W, CALEECHURN M, et al. Structure and multitasking of the c-di-GMP-sensing cellu secretion regulator BcsE[J]. Mbio,2020,11(4):e01303−20.
|
[42] |
POULIN M B, KUPERMAN L L. Regulation of biofilm exopolysaccharide production by cyclic di-guanosine monophosphate[J]. Frontiers in Microbiology,2021,12:730980. doi: 10.3389/fmicb.2021.730980
|
[43] |
ROSS P, MAYER R, WEINHOUSE H, et al. The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives[J]. Journal of Biological Chemistry,1990,265(31):18933−18943. doi: 10.1016/S0021-9258(17)30606-3
|
[44] |
MORGAN J L, MCNAMARA J T, ZIMMER J. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP[J]. Nature Structural & Molecular Biology,2014,21(5):489−496.
|
[45] |
ZOUHIR S, ABIDI W, CALEECHURN M, et al. Structure and multitasking of the c-di-GMP-sensing cellulose secretion regulator BcsE[J]. MBio,2020,11(4):e01303−20.
|
[46] |
ABIDI W, ZOUHIR S, CALEECHURN M, et al. Architecture and regulation of an enterobacterial cellulose secretion system[J]. Science Advances,2021,7(5):eabd8049. doi: 10.1126/sciadv.abd8049
|
[47] |
ANDERSON A C, BURNETT A J, HISCOCK L, et al. The Escherichia coli cellulose synthase subunit G (BcsG) is a Zn2+-dependent phosphoethanolamine transferase[J]. Journal of Biological Chemistry,2020,295(18):6225−6235. doi: 10.1074/jbc.RA119.011668
|
[48] |
AHUMADA-MANUEL C L, MARTíNEZ-ORTIZ I C, HSUEH B Y, et al. Increased c-di-GMP levels lead to the production of alginates of high molecular mass in Azotobacter vinelandii[J]. Journal of Bacteriology,2020,202(24):e00134−20.
|
[49] |
MARTíNEZ-ORTIZ I C, AHUMADA-MANUEL C L, HSUEH B Y, et al. Cyclic di-GMP-mediated regulation of extracellular mannuronan C-5 epimerases is essential for cyst formation in Azotobacter vinelandii[J]. Journal of Bacteriology,2020,202(24):e00135−20.
|
[50] |
MORADALI M F, DONATI I, SIMS I M, et al. Alginate polymerization and modification are linked in Pseudomonas aeruginosa[J]. MBio,2015,6(3):e00453−15.
|
[51] |
BUNDALOVIC-TORMA C, WHITFIELD G B, MARMONT L S, et al. A systematic pipeline for classifying bacterial operons reveals the evolutionary landscape of biofilm machineries[J]. PLoS Computational Biology,2020,16(4):e1007721. doi: 10.1371/journal.pcbi.1007721
|
[52] |
赵腊梅, 孙惠芳, 刘正杰, 等. c-di-GMP对细菌胞外多糖合成与运输的调控[J]. 微生物学通报,2017,44(5):1196−1205. [ZHAO L M, SUN H F, LIU Z J, et al. Regulation in EPS biosynthesis and transportation by cyclic diguanylate[J]. Microbiology China,2017,44(5):1196−1205.
|
[53] |
VÁRALLYAY É, VÁLÓCZI A, ÁGYI Á, et al. Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation[J]. The EMBO Journal,2010,29(20):3507−3519. doi: 10.1038/emboj.2010.215
|
[54] |
ZHOU E, SEMINARA A B, KIM S-K, et al. Thiol-benzo-triazolo-quinazolinone inhibits Alg44 binding to c-di-GMP and reduces alginate production by Pseudomonas aeruginosa[J]. ACS Chemical Biology,2017,12(12):3076−3085. doi: 10.1021/acschembio.7b00826
|
[55] |
WHITFIELD G B, MARMONT L S, BUNDALOVIC-TORMA C, et al. Discovery and characterization of a Gram-positive Pel polysaccharide biosynthetic gene cluster[J]. PLoS Pathogens,2020,16(4):e1008281. doi: 10.1371/journal.ppat.1008281
|
[56] |
WHITFIELD G B, MARMONT L S, OSTASZEWSKI A, et al. Pel polysaccharide biosynthesis requires an inner membrane complex comprised of PelD, PelE, PelF, and PelG[J]. Journal of Bacteriology,2020,202(8):e00684−19.
|
[57] |
WHITNEY J C, COLVIN K M, MARMONT L S, et al. Structure of the cytoplasmic region of PelD, a degenerate diguanylate cyclase receptor that regulates exopolysaccharide production in Pseudomonas aeruginosa[J]. Journal of Biological Chemistry,2012,287(28):23582−23593. doi: 10.1074/jbc.M112.375378
|
[58] |
BARAQUET C, MURAKAMI K, PARSEK M R, et al. The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP[J]. Nucleic Acids Research,2012,40(15):7207−7218. doi: 10.1093/nar/gks384
|
[59] |
PÉREZ-MENDOZA D, BERTINETTI D, LORENZ R, et al. A novel c-di-GMP binding domain in glycosyltransferase BgsA is responsible for the synthesis of a mixed-linkage β-glucan[J]. Scientific Reports,2017,7(1):1−11. doi: 10.1038/s41598-016-0028-x
|
[60] |
BAENA I, PÉREZ-MENDOZA D, SAUVIAC L, et al. A partner-switching system controls activation of mixed-linkage β-glucan synthesis by c-di-GMP in Sinorhizobium meliloti[J]. Environmental Microbiology,2019,21(9):3379−3391. doi: 10.1111/1462-2920.14624
|
[61] |
杜心恬, 宋馨, 刘欣欣, 等. 细菌胞外多糖生物合成转录调控因子研究进展[J]. 微生物学通报,2021,48(2):573−581. [DU X Y, SONG X, LIU X X, et al. Advances in transcription regulators of bacterial exopolysaccharides biosynthesis[J]. Microbiology China,2021,48(2):573−581.
|
[62] |
赵丹, 曹慧莹, 孙梦, 等. 假肠膜明串珠菌HDL-3胞外多糖的分离纯化及结构性质分析[J]. 食品工业科技,2022,43(21):115−122. [ZHAO D, CAO H Y, SUN M, et al. Isolation, purification and structural properties analysis of exopolysaccharide from Leuconostoc pseudointestinalis HDL-3[J]. Science and Technology of Food Industry,2022,43(21):115−122. doi: 10.13386/j.issn1002-0306.2022020092
|
[63] |
BROWN R, MARCHESI J R, MORBY A P. Functional characterisation of Lp_2714, an EAL-domain protein from Lactobacillus plantarum[J]. Biochemical and Biophysical Research Communications,2011,411(1):132−136. doi: 10.1016/j.bbrc.2011.06.112
|
[64] |
HE J, RUAN W, SUN J, et al. Functional characterization of c-di-GMP signaling-related genes in the probiotic Lactobacillus acidophilus[J]. Frontiers in Microbiology,2018,29(9):1935.
|