留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红茶中茶多酚含量的近红外光谱快速检测可行性研究

靳佳蕊 孙晓荣 刘翠玲 吴静珠 郑冬钰 陈冰文

靳佳蕊,孙晓荣,刘翠玲,等. 红茶中茶多酚含量的近红外光谱快速检测可行性研究[J]. 食品工业科技,2023,44(10):256−263. doi: 10.13386/j.issn1002-0306.2022060205
引用本文: 靳佳蕊,孙晓荣,刘翠玲,等. 红茶中茶多酚含量的近红外光谱快速检测可行性研究[J]. 食品工业科技,2023,44(10):256−263. doi: 10.13386/j.issn1002-0306.2022060205
JIN Jiarui, SUN Xiaorong, LIU Cuiling, et al. Feasibility Study on Rapid Determination of Tea Polyphenols in Black Tea by Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(10): 256−263. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060205
Citation: JIN Jiarui, SUN Xiaorong, LIU Cuiling, et al. Feasibility Study on Rapid Determination of Tea Polyphenols in Black Tea by Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(10): 256−263. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060205

红茶中茶多酚含量的近红外光谱快速检测可行性研究

doi: 10.13386/j.issn1002-0306.2022060205
基金项目: 北京市自然科学基金项目:高光谱成像信息驱动的茶叶品质快速无损判别机制研究(4222043);2021年教育部高教司产学合作协同育人项目(202102341023);2022年北京工商大学研究生教育教学改革专项(19008022056)。
详细信息
    作者简介:

    靳佳蕊(1999−)(ORCID:0000−0002−7805−9016),女,硕士研究生,研究方向:食品安全检测,E-mail:rui13661135746@163.com

    通讯作者:

    孙晓荣(1976−)(ORCID:0000−0003−4361−0338),女,博士研究生,教授,研究方向:智能测量技术与数据处理、系统建模与仿真方法、智能控制方法,E-mail:sxrchy@sohu.com

  • 中图分类号: O657.33

Feasibility Study on Rapid Determination of Tea Polyphenols in Black Tea by Near Infrared Spectroscopy

  • 摘要: 茶多酚作为茶叶品质检测的重要指标之一,利用近红外光谱分析技术对茶多酚含量进行快速检测具有重要意义。本文以144个红茶样品作为研究对象,采取近红外光谱法结合偏最小二乘法(Partial Least Squares, PLS),分别建立粉末状茶叶样品和完整茶叶样品的茶多酚含量的近红外快速分析模型。结果表明,选用SNV+一阶导数+Savitzky-Golay平滑的预处理方法结合PLS建立的预测模型效果最佳,粉末状茶叶样品所建立模型训练集相关系数(Correlation Coefficient,r)为0.9990,训练集均方根误差(Root Mean Square Error of Calibration, RMSEC)为0.165%,预测集的r为0.9243,预测集均方根误差(Root Mean Square Error of Prediction, RMSEP)为0.972%;完整茶叶样品训练集r为0.9967,RMSEC为0.310%,预测集的r为0.9541,RMSEP为0.870%。结果表明,完整茶叶样品所建立的PLS定量分析模型要优于粉末状茶叶所建立的模型。因此,利用近红外光谱技术可实现对红茶中茶多酚含量的快速、无损检测。

     

  • 图  傅里叶变换红外光谱仪原理图

    Figure  1.  Schematic diagram of Fourier transform infrared spectrometer

    图  红茶样本的近红外光谱图

    Figure  2.  Near-infrared spectrogram of black tea samples

    图  经过平滑处理的近红外光谱吸收图

    Figure  3.  Smoothed near-infrared spectral absorption patterns

    图  经过导数处理的近红外光谱吸收图

    Figure  4.  Derivative processed near-infrared spectral absorption patterns

    图  经过S-G平滑+一阶导数处理后的近红外光谱吸收图

    Figure  5.  Near-infrared spectral absorption map after smoothing and first derivative processing

    图  基于PLS模型的不同主成分数对预测结果的影响

    Figure  6.  The influence of different principal components on the prediction results based on PLS model

    图  不同形态茶叶样本PLS模型的预测集回归曲线

    Figure  7.  Prediction set regression curve of PLS model for tea samples with different morphology

    图  不同主成分数下ANN模型对应的预测集相关系数(r)与均方根误差(RMSEP)

    Figure  8.  Correlation coefficient (r) and root mean square error (RMSEP) of prediction set corresponding to ANN model under different principal components number

    图  完整茶叶样品建模结果比较

    Figure  9.  Comparison of modeling results of powdered tea samples

    表  1  20组不同浓度的茶多酚含量(%)

    Table  1.   20 groups of tea polyphenols at different concentrations (%)

    红茶样本编号茶多酚含量红茶样本编号茶多酚含量
    H-00112.89H-04511.25
    H-01019.71H-04813.84
    H-01514.97H-05322.38
    H-01614.35H-05719.22
    H-02113.93H-05920.66
    H-02325.79H-06211.51
    H-03120.17H-07018.64
    H-0349.67H-0768.78
    H-03612.80H-08318.96
    H-04310.02H-08814.64
    下载: 导出CSV

    表  2  PLS和PCR建模结果

    Table  2.   PLS and PCR modeling results

    样本类别方法主因子数训练集 预测集
    RMSEC(%)相关系数rRMSEP(%)相关系数r
    粉末状样品PLS+SNV+无61.550.9020 1.460.8468
    PLS+SNV+一阶导数+S-G平滑60.1650.99900.9720.9243
    PLS+SNV+二阶导数+S-G平滑60.1180.99951.650.7549
    PCR+SNV+无1.570.89941.420.8540
    PCR+SNV+一阶导数+S-G平滑1.970.83691.150.9017
    PCR+SNV+二阶导数+S-G平滑2.370.75171.780.7371
    完整样品PLS+SNV+无42.270.80681.880.8590
    PLS+SNV+一阶导数+S-G平滑40.3100.99670.8700.9541
    PLS+SNV+二阶导数+S-G平滑40.1660.99912.520.7875
    PCR+SNV+无2.330.79711.550.8899
    PCR+SNV+一阶导数+S-G平滑2.510.75781.380.9085
    PCR+SNV+二阶导数+S-G平滑3.180.56332.500.6719
    下载: 导出CSV

    表  3  基于LS-SVM对茶叶样本茶多酚含量的预测结果

    Table  3.   Prediction results of tea polyphenol content in tea samples based on LS-SVM

    样本类别训练集 预测集
    相关系数rRMSEC(%)相关系数rRMSEP(%)
    完整茶叶样本0.74400.9832 0.60001.0136
    粉末状茶叶样本0.79360.88750.62801.0143
    下载: 导出CSV
  • [1] 黄玉梅. 谈谈茶叶中茶多酚的药理保健功效[J]. 农业考古,2010(5):255−258. [HUANG Yumei. Talk about the health care effect of tea polyphenols in tea[J]. Agricultural Archaeology,2010(5):255−258.
    [2] 陈宗懋. 20世纪茶与健康研究的主要进展[J]. 中国茶叶,2001(4):8−10. [CHEN Zongmao. Major advances in tea and health research in the 20th century[J]. Chinese Tea,2001(4):8−10. doi: 10.3969/j.issn.1000-3150.2001.04.002
    [3] 陈淑珍, 甄永苏. 茶多酚的分子作用靶点及其在抗肿瘤药物实验治疗中的作用[J]. 药学学报,2013,48(1):1−7. [CHEN Shuzhen, ZHEN Yongsu. Molecular targets of tea polyphenols and their role in experimental treatment of antitumor drugs[J]. Acta Pharmaceutica Sinica,2013,48(1):1−7.
    [4] 陈磊. 不同种类茶叶中茶多酚含量的测定和分析[J]. 食品安全导刊,2021(25):71,73. [CHEN Lei. Determination and analysis of tea polyphenols in different kinds of tea[J]. China Food Safety Magazine,2021(25):71,73.
    [5] 于然, 李晔, 金丽华, 等. 高效液相色谱法同时测定茶叶中6种茶多酚含量[J]. 中国食品添加剂,2021,32(5):74−82. [YU Ran, LI Ye, JIN Lihua, et al. Simultaneous determination of 6 kinds of tea polyphenols in tea by HPLC[J]. China Food Additives,2021,32(5):74−82.
    [6] 朱虹. 茶叶中茶多酚的检测方法研究[J]. 福建茶叶,2019,41(8):4. [ZHU Hong. Study on the detection method of tea polyphenols in tea[J]. Tea In Fujian,2019,41(8):4. doi: 10.3969/j.issn.1005-2291.2019.08.003
    [7] SIRIPAT S, DARANEE P. Flow injection analysis-spectrophotometry for rapid determination of total polyphenols in tea extracts[J]. Journal of Flow Injection Analysis,2018,25(1):61−64.
    [8] 傅海军, 周树斌, 武小红, 等. 茶叶傅里叶近红外光谱的混合模糊极大熵聚类分析[J]. 光谱学与光谱分析,2019,39(11):3465−3469. [FU Haijun, ZHOU Shubin, WU Xiaohong, et al. Mixed fuzzy maximum entropy clustering analysis of Fourier near infrared spectra of tea leaves[J]. Spectroscopy and Spectral Analysis,2019,39(11):3465−3469.
    [9] 圣阳, 焦俊, 滕燕, 等. 基于卷积神经网络和近红外光谱的茶叶品种和等级鉴别[J]. 分析科学学报,2022,38(5):552−560. [SHENG Yang, JIAO Jun, TENG Yan, et al. Identification of tea varieties and grades based on convolutional neural network and near infrared spectroscopy[J]. Journal of Analytical Science,2022,38(5):552−560. doi: 10.13526/j.issn.1006-6144.2022.05.004
    [10] 王胜鹏, 高士伟, 滕靖, 等. 近红外光谱技术在茶叶中的研究进展[J]. 华中农业大学学报,2021,40(5):226−232. [WANG Shengpeng, GAO Shiwei, TENG Jing, et al. Research progress of near infrared spectroscopy in tea[J]. Journal of Huazhong Agricultural University,2021,40(5):226−232. doi: 10.13300/j.cnki.hnlkxb.2021.05.027
    [11] LUO Yu, LI Wenlong, QU Haibin. Research progress on method validation of near infrared spectroscopy in quantitative analysis[J]. China Journal of Chinese Material Medica,2017,41(19):3515−3519.
    [12] 罗一帆, 郭振飞, 朱振宇, 等. 近红外光谱测定茶叶中茶多酚和茶多糖的人工神经网络模型研究[J]. 光谱学与光谱分析,2005(8):1230−1233. [LUO Yifan, GUO Zhenfei, ZHU Zhenfei, et al. Study on Artificial neural network model for determination of tea polyphenols and tea polysaccharides by near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2005(8):1230−1233. doi: 10.3321/j.issn:1000-0593.2005.08.017
    [13] 夏贤明, 丁宁. 用近红外光谱法检测绿茶中品质成分的研究[J]. 分析化学,1991(8):945−948. [XIA Xianming, DING Ning. Study on the determination of quality components in green tea by near infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry,1991(8):945−948. doi: 10.3321/j.issn:0253-3820.1991.08.001
    [14] WANG Shengpeng, LIU Panpan, FENG Lin, et al. Rapid determination of tea polyphenols content in Qingzhuan tea based on near infrared spectroscopy in conjunction with three different PLS algorithms[J]. Food Science and Technology,2022,42:94322. doi: 10.1590/fst.94322
    [15] 李尚科, 杜国荣, 李跑, 等. 基于近红外光谱技术和优化预处理方法的豆浆粉无损鉴别研究[J]. 食品研究与开发,2020,41(17):144−150. [LI Shangke, DU Guorong, LI Pao, et al. Nondestructive identification of soybean milk powder based on near infrared spectroscopy and optimized pretreatment method[J]. Food Research and Development,2020,41(17):144−150. doi: 10.12161/j.issn.1005-6521.2020.17.023
    [16] 左旭丽, 潘秀珍, 耿泽宇, 等. 经19种光谱预处理筛选建立3种连翘叶茶近红外定性定量模型[J]. 食品安全质量检测学报,2022,13(19):6431−6440. [ZUO Xuli, PAN Xiuzhen, GENG Zeyu, et al. The near-infrared qualitative and quantitative models of 3 kinds of forsythia leaf tea were established by 19 kinds of spectral pretreatment and screening[J]. Journal of Food Safety & Quality,2022,13(19):6431−6440. doi: 10.19812/j.cnki.jfsq11-5956/ts.2022.19.032
    [17] DU Zhenjiao, TIAN Wenfei, Tilley Michael, et al. Quantitative assessment of wheat quality using near-infrared spectroscopy: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food safety,2022,21(3):2956−3009. doi: 10.1111/1541-4337.12958
    [18] 张津源, 张德贤, 张苗. 基于连续投影算法的小麦蛋白质含量近红外光谱预测分析[J]. 江苏农业学报,2019,35(4):960−964. [ZHANg Jinyuan, ZHANG Dexian, ZHANG Miao. Prediction and analysis of wheat protein content by near infrared spectroscopy based on continuous projection algorithm[J]. Jiangsu Journal of Agricultural Sciences,2019,35(4):960−964. doi: 10.3969/j.issn.1000-4440.2019.04.030
    [19] ZHUANG Xingang, WANG Lili, CHEN Qi, et al. Identification of green tea origins by near-infrared(NIR) spectroscopy and different regression tools[J]. Science China(Technological Sciences),2017,60(1):84−90. doi: 10.1007/s11431-016-0464-0
    [20] 余代鑫, 郭盛, 张霞, 等. 近红外光谱技术结合化学计量学和机器学习算法的干姜产地溯源研究[J]. 中国中药杂志,2022,47(17):4583−4592. [YU Daixin, GUO Sheng, ZHANG Xia, et al. Origin tracing of dried ginger by near infrared spectroscopy combined with stoichiometry and machine learning algorithm[J]. China Journal of Chinese Materia Medica,2022,47(17):4583−4592. doi: 10.19540/j.cnki.cjcmm.20220514.103
    [21] 丁海泉, 温江北, 高洪智, 等. 最小二乘支持向量机用于人参皂苷近红外光谱分析研究[J]. 现代农业装备,2021,42(5):17−22. [DING Haiquan, WEN Jiangbei, GAO Hongzhi, et al. The least square support vector machine is used for near infrared spectroscopy analysis of ginsenosides[J]. Modern Agricultural Equipment,2021,42(5):17−22. doi: 10.3969/j.issn.1673-2154.2021.05.003
    [22] 崔蕴涵, 许金钗, 方智毅, 等. 莲子含水率近红外光谱检测模型构建[J]. 食品研究与开发,2021,42(18):130−135. [CUI Yunhan, XU Jinchai, FANG Zhiyi, et al. Construction of near-infrared spectroscopy detection Model for water content of lotus seed[J]. Food Research and Development, Food Research and Development,2021,42(18):130−135. doi: 10.12161/j.issn.1005-6521.2021.18.019
    [23] 刘淑文, 游静萍, 李云冰, 等. 影响茶叶中茶多酚含量的因素分析[J]. 福建茶叶,2022,44(2):18−21. [LIU Shuwen, YOU Jingping, LI Yunbing, et al. Analysis on influencing factors of tea polyphenol content in tea[J]. Tea in Fujian,2022,44(2):18−21. doi: 10.3969/j.issn.1005-2291.2022.02.007
    [24] LI Shiming, ZHANG Liang, WAN Xiaochun, et al. Focusing on the recent progress of tea polyphenol chemistry and perspectives[J]. Food Science and Human Wellness,2022,11(3):437−444. doi: 10.1016/j.fshw.2021.12.033
    [25] 第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析,2019,39(9):2800−2806. [[DI Wupengyao, BIAN Xihui, WANG Zifang, et al. Study on the selection of spectral preprocessing methods[J]. Spectroscopy and Spectral Analysis,2019,39(9):2800−2806.
    [26] 苗雪雪, 苗莹, 龚浩如, 等. 不同偏最小二乘法的近红外光谱技术测定大米中水分的研究[J]. 分析科学学报,2019,35(5):643−649. [MIAO Xuexue, MIAO Ying, GONG Haoru, et al. Determination of moisture in rice by near infrared spectroscopy with different partial least squares method[J]. Journal of Analytical Science,2019,35(5):643−649.
    [27] 王胜鹏, 龚自明, 何远军, 等. 背景和光程对茶多酚含量近红外预测模型的影响[J]. 华中农业大学学报,2015,34(2):120−124. [WANG Shengpeng, GONG Ziming, HE Yuanjun, et al. Effect of background and optical path on near-infrared prediction model of tea polyphenol content[J]. Journal of Huazhong Agricultural University,2015,34(2):120−124.
    [28] 周昌海, 周海军. 铁观音中茶多酚含量的近红外光谱检测模型分析[J]. 宜宾学院学报,2019,19(12):121−124. [ZHOU Changhai, ZHOU Haijun. Analysis of tea polyphenols content in Tieguanyin by near infrared spectroscopy model[J]. Journal of Yibin University,2019,19(12):121−124.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  45
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-23
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回