留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PEG修饰EGCG/Cur复合脂质体的制备与抗氧化研究

李亮 袁传勋 王敏 朱梦男 金日生

李亮,袁传勋,王敏,等. PEG修饰EGCG/Cur复合脂质体的制备与抗氧化研究[J]. 食品工业科技,2023,44(9):88−95. doi: 10.13386/j.issn1002-0306.2022060218
引用本文: 李亮,袁传勋,王敏,等. PEG修饰EGCG/Cur复合脂质体的制备与抗氧化研究[J]. 食品工业科技,2023,44(9):88−95. doi: 10.13386/j.issn1002-0306.2022060218
LI Liang, YUAN Chuanxun, WANG Min, et al. Preparation and Antioxidant Study of PEG-Modified EGCG/Cur Composite Liposomes[J]. Science and Technology of Food Industry, 2023, 44(9): 88−95. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060218
Citation: LI Liang, YUAN Chuanxun, WANG Min, et al. Preparation and Antioxidant Study of PEG-Modified EGCG/Cur Composite Liposomes[J]. Science and Technology of Food Industry, 2023, 44(9): 88−95. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060218

PEG修饰EGCG/Cur复合脂质体的制备与抗氧化研究

doi: 10.13386/j.issn1002-0306.2022060218
基金项目: 安徽省科技重大专项(202003a06020011)。
详细信息
    作者简介:

    李亮(1996−),男,硕士研究生,研究方向:小分子活性物质包埋,E-mail:55884910@qq.com

    通讯作者:

    金日生(1982−),男,博士,助理研究员,研究方向:天然活性物质研究与开发,E-mail:jinrisheng@hfut.edu.cn

  • 中图分类号: TS201.2

Preparation and Antioxidant Study of PEG-Modified EGCG/Cur Composite Liposomes

  • 摘要: 本研究采用薄膜水合法制备表没食子儿茶素没食子酸酯(EGCG)/姜黄素(Cur)复合脂质体(EGCG/Cur-L),通过单因素实验确定最佳制备工艺。为了增加脂质体的稳定性,对EGCG/Cur-L表面进行二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000(DSPE-PEG2000)修饰,并对两种脂质体的包封率、粒径分布、微观形态和修饰效果进行研究,同时采用DPPH法评价脂质体的氧化稳定性。结果表明:EGCG/Cur-L的最佳工艺为:卵磷脂与胆固醇质量比为6:1,PBS缓冲溶液pH为6.5,EGCG添加量为6 mg,Cur添加量为3 mg,水化温度为55 ℃。EGCG包封率为68.78%,Cur包封率为90.23%,平均粒径为183.8±5.4 nm,多分散系数(PDI)为0.178±0.01,平均Zeta-电位为−34.7±0.62 mV。修饰后EGCG包封率为60.31%,Cur包封率为88.53%。表面修饰后Cur的包封率无明显变化,EGCG包封率有所下降;动态光散射(DLS)和透射电子显微镜(TEM)结果表明,修饰后脂质体的平均粒径从未修饰的183.8 nm增大到374.5 nm;Zeta-电位和傅里叶红外分析结果表明DSPE-PEG2000成功修饰在脂质体表面,且不改变脂质体内部结构。修饰脂质体DPPH清除率最高,在15 d内氧化稳定性均大于其他脂质体,表明DSPE-PEG2000可以增强脂质体的抗氧化能力。

     

  • 图  卵磷脂与胆固醇质量比对EGCG/Cur-L包封率及粒径分布的影响

    Figure  1.  Effect of mass ratio of lecithin to cholesterol on EE of EGCG/Cur-L and particle size distribution

    图  Cur添加量对EGCG/Cur-L包封率及粒径分布的影响

    Figure  2.  Effect of concentrations of Cur on EE of EGCG/Cur-L and particle size distribution

    图  水化温度对EGCG/Cur-L包封率及粒径分布的影响

    Figure  3.  Effect of temperature of EGCG/Cur on EE of EGCG/Cur-L and particle size distribution

    图  PBS缓冲液的pH对EGCG/Cur-L包封率及粒径分布的影响

    Figure  4.  Effect of pH of PBS buffer on EE of EGCG/Cur-L and particle size distribution

    图  un-L、EGCG/Cur-L、DSPE-PEG2000-L的粒度分布

    Figure  5.  Particle size distribution of un-L、EGCG/Cur-L、DSPE-PEG2000-L

    图  EGCG/Cur-L、DSPE-PEG2000-L的透射电镜图

    Figure  6.  TEM images of EGCG/Cur-L and DSPE-PEG2000-L

    图  Cur、EGCG、DSPE-PEG2000、un-L、EGCG/Cur-L和DSPE-PEG2000-L的红外光谱图

    Figure  7.  Infrared spectra of Cur, EGCG, DSPE-PEG2000, un-L, EGCG/Cur-L and DSPE-PEG2000-L

    图  un-L、Cur-L、EGCG-L、EGCG/Cur-L、DSPE-PEG2000-L的DPPH自由基清除能力

    Figure  8.  DPPH radical scavening activity of un-L, Cur-L, EGCG-L, EGCG/Cur-L and DSPE-PEG2000-L

    图  un-L、Cur-L、EGCG-L、EGCG/Cur-L、DSPE-PEG2000-L的DPPH自由基清除能力稳定性

    Figure  9.  Stability of DPPH radical scavenging ability of un-L, Cur-L, EGCG-L, EGCG/Cur-L and DSPE-PEG2000-L

  • [1] GAN R Y, LI H B, SUI Z Q, et al. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review[J]. Crit Rev Food Sci Nutr,2018,58:1−18. doi: 10.1080/10408398.2014.971353
    [2] HAYKAWA S, SAITO K, MIYOSHI N, et al. Anti-cancer effects of green tea by either anti-or pro-oxidative mechanisms[J]. Asian Pacific Journal of Cancer Prevention,2016,17:1649−1654. doi: 10.7314/APJCP.2016.17.4.1649
    [3] SAHADEVAN R, SINGH S, BINOY A, et al. Chemico-biological aspects of (-)-epigallocatechin-3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects[J]. Critical Reviews in Food Science and Nutrition,2022:1−30.
    [4] RU W Y, JIN C H, KANG Y G, et al. In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano-and microscale particles[J]. International Journal of Nanomedicine,2017,12:7007−7013. doi: 10.2147/IJN.S146296
    [5] BIMONTE S, CASCELLA M, BARBIERI A, et al. Current shreds of evidence on the anticancer role of EGCG in triple negative breast cancer: An update of the current state of knowledge[J]. Infectious Agents and Cancer,2020,15:1−6. doi: 10.1186/s13027-019-0268-z
    [6] ALMATROODI S A, ALMATROUDI A, KHAN A A, et al. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer[J]. Molecules,2020,25:3146. doi: 10.3390/molecules25143146
    [7] DAI W, RUAN C, ZHANG Y, et al. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review[J]. Journal of Functional Foods,2020,65:103732. doi: 10.1016/j.jff.2019.103732
    [8] SMITH A J, KAVURU P, ARORA K K, et al. Crystal engineering of green tea epigallocatechin-3-gallate (EGCG) cocrystals and pharmacokinetic modulation in rats[J]. Molecular Pharmaceutics,2013,10(8):2948−2961. doi: 10.1021/mp4000794
    [9] HOSSEINI A, HOSSEINZADEH H. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review[J]. Biomed Pharmacother,2018,99:411−21. doi: 10.1016/j.biopha.2018.01.072
    [10] EGAN M E, PEARSON M, WEINER S A, et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects[J]. Science,2004,304:600−602. doi: 10.1126/science.1093941
    [11] 刘伟, 顾秀竹, 吴筱霓, 等. 姜黄素药理作用的研究进展[J]. 华西药学杂志,2021,36:336−340. [LIU Wei, GU Xiuzhu, WU Xiaoni, et al. Research progress on the pharmacological effects of curcumin[J]. West China Pharmaceutical Journal,2021,36:336−340. doi: 10.13375/j.cnki.wcjps.2021.03.022
    [12] PATTNI B S, CHUPIN V V, TORCHILIN V P. New developments in liposomal drug delivery[J]. Chemical Reviews,2015,115:10938−10966. doi: 10.1021/acs.chemrev.5b00046
    [13] AJEESHKUMAR K K, ANEESH P A, RAJU N, et al. Advancements in liposome technology: preparation techniques and applications in food, functional foods, and bioactive delivery: A review[J]. Compr Rev Food Sci Food Saf,2021,20:1280−306.
    [14] PAOLINO D, ACCOLLA M L, CILURZO F, et al. Interaction between PEG lipid and DSPE/DSPC phospholipids: An insight of PEGylation degree and kinetics of de-PEGylation[J]. Colloids Surf B Biointerfaces,2017,155:266−275. doi: 10.1016/j.colsurfb.2017.04.018
    [15] SONG J W, LIU Y S, GUO Y R, et al. Nano-liposomes double loaded with curcumin and tetrandrine: Preparation, characterization, hepatotoxicity and anti-tumor effects[J]. International Journal of Molecular Sciences,2022,23:6858. doi: 10.3390/ijms23126858
    [16] BEGUM M Y, RA M O, ALQAHTANI A, et al. Development of stealth liposomal formulation of celecoxib: In vitro and in vivo evaluation[J]. Plos One,2022,17:e0264518. doi: 10.1371/journal.pone.0264518
    [17] RAMADASS S K, ANANTHARAMAN N V, SUBRAMANIAN S, et al. Paclitaxel/epigallocatechin gallate coloaded liposome: A synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells[J]. Colloids and Surfaces B:Biointerfaces,2015,125:65−72. doi: 10.1016/j.colsurfb.2014.11.005
    [18] 曹振大, 梁蓉. 表没食子儿茶素没食子酸酯脂质体的制备及其透皮性能研究[J]. 日用化学工业,2020,50:609−614, 637. [CAO Zhenda, LIANG Rong. Preparation of epigallocatechin gallate liposomes and their transdermal properties[J]. Daily Chemical Industry,2020,50:609−614, 637.
    [19] 严佳蕾, 王小永. 壳聚糖修饰脂质体对姜黄素的包载作用[J]. 中国测试,2016,42:61−66. [YAN Jialei, WANG Xiaoyong. Encapsulation of curcumin by chitosan-modified liposomes[J]. China Test,2016,42:61−66. doi: 10.11857/j.issn.1674-5124.2016.01.014
    [20] ZHANG W, WANG Z, WU C, et al. The effect of DSPE-PEG2000, cholesterol and drug incorporated in bilayer on the formation of discoidal micelles[J]. European Journal of Pharmaceutical Sciences,2018,125:74−85. doi: 10.1016/j.ejps.2018.09.013
    [21] CHARCOSSET C, JUBAN A, VALOUR J P, et al. Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices[J]. Chemical Engineering Research and Design,2015,94:508−515. doi: 10.1016/j.cherd.2014.09.008
    [22] TAN C, XUE J, ABBAS S, et al. Liposome as a delivery system for carotenoids: Comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation[J]. Journal of Agricultural and Food Chemistry,2014,62:6726−6735. doi: 10.1021/jf405622f
    [23] 焦岩, 李大婧, 刘春泉, 等. 叶黄素纳米脂质体的制备工艺优化及其氧化稳定性[J]. 食品科学,2017,38(18):259−265. [JIAO Yan, LI Dajing, LIU Chunquan, et al. Optimization of preparation process and oxidative stability of lutein nanoliposomes[J]. Food Science,2017,38(18):259−265. doi: 10.7506/spkx1002-6630-201718040
    [24] SOMJID S, KRONGSUK S, JOHNS J R. Cholesterol concentration effect on the bilayer properties and phase formation of niosome bilayers: A molecular dynamics simulation study[J]. Journal of Molecular Liquids,2018,256:591−8. doi: 10.1016/j.molliq.2018.02.077
    [25] MARANHAO R C, VITAL C G, TAVONI T M, et al. Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents[J]. Expert Opinion on Drug Delivery,2017,14:1217−1226. doi: 10.1080/17425247.2017.1276560
    [26] LU Q, LI D C, JIANG J, et al. Preparation of a tea polyphenol nanoliposome system and its physicochemical properties[J]. Journal of Agricultural and Food Chemistry,2011,59:13004−13011. doi: 10.1021/jf203194w
    [27] MARIANECCI C, MARZIO L D, RINALDI F, et al. Niosomes from 80s to present: The state of the art[J]. Advances in Colloid and Interface Science,2014,205:187−206. doi: 10.1016/j.cis.2013.11.018
    [28] ROG T, PASENKIEWUCZ-GIERULA M. Effects of epicholesterol on the phosphatidylcholine bilayer: A molecular simulation study[J]. Biophysical Journal,2003,84:1818−1826. doi: 10.1016/S0006-3495(03)74989-3
    [29] SUłKOWSKI W W, PENTAK D, NOWAK K, et al. The influence of temperature, cholesterol content and pH on liposome stability[J]. Journal of Molecular Structure,2005,744−747:737−747. doi: 10.1016/j.molstruc.2004.11.075
    [30] MANDAL S, BANERJEE C, GHOSH S, et al. Modulation of the photophysical properties of curcumin in nonionic surfactant (Tween-20) forming micelles and niosomes: A comparative study of different microenvironments[J]. The Journal of Physical Chemistry B,2013,117:6957−6968. doi: 10.1021/jp403724g
    [31] ANAND P, KUNNUMAKKARA A B, NEWMAN R A, et al. Bioavailability of curcumin: Problems and promises[J]. Molecular Pharmaceutics,2007,4:807−818. doi: 10.1021/mp700113r
    [32] HU J, WANG J, WANG G, et al. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells[J]. International Journal of Molecular Medicine,2016,37:690−702. doi: 10.3892/ijmm.2016.2458
    [33] ELIASEN R, ANDRESEN T L, LARSEN J B. PEG-lipid post insertion into drug delivery liposomes quantified at the single liposome level[J]. Advanced Materials Interfaces,2019,6:1801807. doi: 10.1002/admi.201801807
    [34] VIJAYAKUMAR M R, KOSURU R, VUDDANDA P R, et al. Trans resveratrol loaded DSPE PEG 2000 coated liposomes: An evidence for prolonged systemic circulation and passive brain targeting[J]. Journal of Drug Delivery Science and Technology,2016,33:125−135. doi: 10.1016/j.jddst.2016.02.009
    [35] WANG L, LI L, XU N, et al. Effect of carboxymethylcellulose on the affinity between lysozyme and liposome monolayers: Evidence for its bacteriostatic mechanism[J]. Food Hydrocolloids,2020,98:105263. doi: 10.1016/j.foodhyd.2019.105263
    [36] 刘欣, 罗志刚, 李小林. 海藻酸钠-壳聚糖表面修饰维生素C/β-胡萝卜素复合脂质体的制备[J]. 现代食品科技,2020,36:163−169. [LIU Xin, LUO Zhigang, LI Xiaolin. Preparation of sodium alginate-chitosan surface-modified vitamin C/β-carotene complex liposomes[J]. Food Science and Technology,2020,36:163−169.
    [37] SHUAI C A, YZ A, YH B, et al. Fabrication of multilayer structural microparticles for co-encapsulating coenzyme Q10 and piperine: Effect of the encapsulation location and interface thickness[J]. Food Hydrocolloids,2020,109:106090. doi: 10.1016/j.foodhyd.2020.106090
    [38] WU F G, LUO J J, YU Z W. Infrared spectroscopy reveals the nonsynchronicity phenomenon in the glassy to fluid micellar transition of DSPE-PEG2000 aqueous dispersions[J]. Langmuir,2010,26:12777−84. doi: 10.1021/la101539z
    [39] KOPRIVNJAK O, SKEVIN D, VALIC S, et al. The antioxidant capacity and oxidative stability of virgin olive oil enriched with phospholipids[J]. Food Chemistry,2008,111:121−126. doi: 10.1016/j.foodchem.2008.03.045
    [40] CHRN X, DENG Z, ZHANG C, et al. Is antioxidant activity of flavonoids mainly through the hydrogen-atom transfer mechanism[J]. Food Research International, 2018, 10: 108081.
    [41] 蔡晓璇, 吕应年, 戚怡. 长循环脂质体的应用领域和作用机制[J]. 中国组织工程研究,2022,26:2613−2617. [CAI Xiaoxuan, LYU Yingnian, QI Yi. Application fields and mechanisms of action of long-circulating liposomes[J]. Chinese Journal of Tissue Engineering,2022,26:2613−2617.
  • 加载中
图(9)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回