Application of Agroforestry By-product Based Nanocellulose in Food Industry
-
摘要: 纤维素是自然界中含量丰富的天然聚合物之一,具有可再生、环境友好和生物相容性等特性。纳米纤维素是以纤维素为原料通过物理或化学方式制备而来。不同的制备方式对纳米纤维素的形态特征、物理化学性质产生显著的影响,使其呈现出不同的特性。纳米纤维素因具有较高的表面积和模量、两亲性、生物相容性和安全性等优异特性,在食品工业中备受关注。本文重点对近年来国内外关于农林副产品制备的纳米纤维素在食品包装、乳化稳定剂、酶固定化和基于表面增强拉曼光谱(SERS)的食品污染物的无损快速检测方面的应用进行了总结,分析了其在食品工业应用中的挑战,对今后研究进行了展望。Abstract: Cellulose is one of the abundant natural polymers in nature, which is renewable, environmentally friendly and biocompatible. Nanocellulose is prepared by physical or chemical method from cellulose. The morphology and physicochemical properties of nanocellulose are significantly affected by the different methods of preparation. Nanocellulose has attracted much attention in food industry due to its high surface area and modulus, amphiphilicity, biocompatibility and safety. In this paper, the application of nanocellulose prepared by agricultural and forestry by-products in food packaging, emulsifying stabilizer, enzyme immobilization and rapid nondestructive detection of food contaminants based on surface-enhanced Raman spectroscopy (SERS) are summarized. Challenges in the application of nanocellulose in food industry are analyzed, and the research development tendency is prospected.
-
Key words:
- nanocellulose /
- food packaging /
- emulsion /
- enzyme immobilization /
- SERS
-
表 1 纳米纤维素添加对食品包装材料性能的影响
Table 1. Effects of nanocellulose addition on properties of food packaging
表 2 纳米纤维素制备的SERS衬底在检测食品污染物中的应用
Table 2. Application of SERS substrate prepared from nanocellulose in the detection of food contaminants
-
[1] KLEMM D. Cellulose: Fascinating biopolymer and sustainable raw material[J]. Angewandte Chemis-international Edition,2005,44(22):3358−3393. doi: 10.1002/anie.200460587 [2] 陈欢, 钟洪浩, 王鲁峰. TEMPO氧化-高压均质联用制备柑橘纳米纤维素及其性质表征[J]. 食品科学技术学报,2022,40(4):35−44. [CHEN H, ZHONG H H, WANG L F. Preparation and characterization of citrus canofibers using TEMPO-oxidation and high-pressure homogenization treatment[J]. Journal of Food Science and Technology,2022,40(4):35−44. [3] 吴海燕, 袁秋梅. 纳晶纤维素在食品工业中的应用研究进展[J]. 食品工业,2020,41(5):276−279. [WU H Y, YUAN Q M. Research progress of the application of nanocrystalline nellulose in food industry[J]. Food Industry,2020,41(5):276−279. [4] 董秀瑜, 唐世英, 杨贺棋, 等. 纳米纤维素的制备及其在食品领域中的应用研究进展[J]. 食品工业科技,2021,42(24):434−444. [DONG X Y, TANG S Y, YANG H Q, et al. Preparation of nano-cellulose and its application in food field[J]. Science and Technology of Food Industry,2021,42(24):434−444. doi: 10.13386/j.issn1002-0306.2020110291 [5] MU R, HONG X, NI Y, et al. Recent trends and applications of cellulose nanocrystals in food industry[J]. Trends in Food Science and Technology,2019,93:136−144. doi: 10.1016/j.jpgs.2019.09.013 [6] BAI L, HUAN S Q, ZHU Y, et al. Recent advances in food emulsions and engineering foodstuffs using plant-based nanocelluloses[J]. Annual Review of Food Science and Technology,2021,12(1):383−406. doi: 10.1146/annurev-food-061920-123242 [7] 赵冬梅, 初小宇, 魏丽娜, 等. 纳米纤维素在食品包装材料中的应用研究进展[J]. 高分子通报,2021(11):11−20. [ZHAO D M, CHU X Y, WEI L N, et al. Application and research progress of nano cellulose in food packaging materials[J]. Polymer Bulletin,2021(11):11−20. doi: 10.14028/j.cnki.1003-3726.2021.11.003 [8] DUFRESNE A. Nanocellulose processing properties and potential applications[J]. Current Forestry Reports,2019,5(2):76−89. doi: 10.1007/s40725-019-00088-1 [9] KONTTURI E, LAAKSONEN P, LINDER M B, et al. Advanced materials through assembly of nanocelluloses[J]. Advanced Materials,2018,30(24):1703779. doi: 10.1002/adma.201703779 [10] LING S, CHEN W, FAN Y, et al. Biopolymer nanofibrils: Structure, modeling, preparation, and applications[J]. Progress in Polymer Science,2018,85:1−56. doi: 10.1016/j.progpolymsci.2018.06.004 [11] NECHYPORCHUK O, BELGACEM M N, PIGNON F. Current progress in rheology of cellulose nanofibril suspensions[J]. Biomacromolecules,2016,17(7):2311−2320. doi: 10.1021/acs.biomac.6b00668 [12] ABDALLAH W, KAMAL M R. Influence of process variables on physical characteristics of spray freeze dried cellulose nanocrystals[J]. Cellulose,2018,25(10):5711−5730. doi: 10.1007/s10570-018-1975-0 [13] LEE M H, SHIN G H, PARK H J. Solid lipid nanoparticles loaded thermoresponsive pluronic-xanthan gum hydrogel as a transdermal delivery system[J]. Journal of Applied Polymer Science,2018,135(11):46004. doi: 10.1002/app.46004 [14] ESPINOSA S C, KUHNT T, FOSTER E J, et al. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis[J]. Biomacromolecules,2013,14(4):1223−1230. doi: 10.1021/bm400219u [15] ARAKI J, WADA M, KUGA S. Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting[J]. Langmuir,2001,17(1):21−27. doi: 10.1021/la001070m [16] KHAN A, HUQ T, KHAN R A, et al. Nanocellulose-based composites and bioactive agents for food packaging[J]. Critical Reviews in Food Science and Nutrition,2014,54(2):163−174. doi: 10.1080/10408398.2011.578765 [17] MOHAMED S A A, EL-SAKHAWY M, EL-SAKHAWY M A M. Polysaccharides, protein and lipid -based natural edible films in food packaging: A review[J]. Carbohydrate Polymers,2020,238:116178. doi: 10.1016/j.carbpol.2020.116178 [18] NAIR S S, ZHU J Y, DENG Y L, et al. High performance green barriers based on nanocellulose[J]. Sustainable Chemical Processes,2014,2:23. doi: 10.1186/s40508-014-0023-0 [19] 肖亚庆. 麦麸纤维素纳米晶-大豆分离蛋白复合包装膜的制备及性能研究[D]. 杨凌: 西北农林科技大学, 2021XIAO Y Q. Preparation and performance study of wheat bran cellulose nanocrystals soy protein isolate composite packaging film[D]. Yangling: Northwest A&F University, 2021. [20] CAO L L, GE T T, MENG F S, et al. An edible oil packaging film with improved barrier properties and heat sealability from cassia gum incorporating carboxylated cellulose nano crystal whisker[J]. Food Hydrocolloids,2020,98:105251. doi: 10.1016/j.foodhyd.2019.105251 [21] KRIECHBAUM K, BERGSTROM L. Antioxidant and UV-blocking leather-inspired nanocellulose-based films with high wet strength[J]. Biomacromolecules,2020,21(5):1720−1728. doi: 10.1021/acs.biomac.9b01655 [22] 宋振源, 贾智. 纳米微晶纤维素/阳离子淀粉涂布对食品包装用纸性能影响的研究[J]. 中国造纸,2022,41(1):56−61. [SONG Z Y, JIA Z. Study on effect of nanocrystaline cellulose/cationic starch coating on properties of food packaging paper[J]. Chinese Paper,2022,41(1):56−61. doi: 10.11980/j.issn.0254-508X.2022.01.009 [23] DAI H, OU S, YUE H, et al. Utilization of pineapple peel for production of nanocellulose and film application[J]. Cellulose,2018,25(3):1743−1756. doi: 10.1007/s10570-018-1671-0 [24] PARKER R M, GUIDETTI G, WILLIAMS C A, et al. The self-assembly of cellulose nanocrystals: Hierarchical design of visual appearance[J]. Advanced Materials,2018,30(19):1704477. doi: 10.1002/adma.201704477 [25] BAI L, GRECA L G, XIANG W C, et al. Adsorption and assembly of cellulosic and lignin colloids at oil/water interfaces[J]. Langmuir,2019,35(3):571−588. doi: 10.1021/acs.langmuir.8b01288 [26] LE H D, LOVEDAY S M, SINGH H, et al. Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: Responsiveness to pH and ionic strength[J]. Food Hydrocolloids,2020,99:105344. doi: 10.1016/j.foodhyd.2019.105344 [27] SARKAR A, LI H C, CRAY D, et al. Composite whey protein-cellulose nanocrystals at oil-water interface: Towards delaying lipid digestion[J]. Food Hydrocolloids,2018,77:436−444. doi: 10.1016/j.foodhyd.2017.10.020 [28] BAI L, LV S S, XIANG W C, et al. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion[J]. Food Hydrocolloids,2019,96:709−716. doi: 10.1016/j.foodhyd.2019.04.039 [29] DU L H, LOVEDAY S M, SINGH H, et al. Gastrointestinal digestion of Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: Release of short-chain fatty acids[J]. Food Chemistry,2020,320:126650. doi: 10.1016/j.foodchem.2020.126650 [30] N A MICHAEL ESKIN, 倪洋, 段慧, 等. 纤维素纳米晶体颗粒稳定剂在食品Pickering乳液中的应用[J]. 粮油食品科技,2021,29(3):39−46. [ESKIN N A M, NI Y, DUAN H, et al. The application of cellulose nanocrystals in Pickering emulsion as the particle stabilizer[J]. Science and Technology of Cereals, Oils and Foods,2021,29(3):39−46. [31] SHIKHA D, BINTI S, GURSHARAN S, et al. Immobilization of mannanase on sodium alginate-grafted-β-cyclodextrin: An easy and cost effective approach for the improvement of enzyme properties[J]. International Journal of Biological Macromolecules,2019,156:1347−1358. [32] MOHAPATRA B R. Biocatalytic characteristics of chitosan nanoparticle-immobilized alginate lyase extracted from a novel Arthrobacter species AD-10[J]. Biocatalysis and Agricultural Biotechnology,2020,23:101458. [33] GENNARI A, FUHR A J, VOLPATO G, et al. Magnetic cellulose: Versatile support for enzyme immobilization-a review[J]. Carbohydrate Polymers,2020,246:116646. doi: 10.1016/j.carbpol.2020.116646 [34] ELIAS N, WAHAB R A, CHANDREN S, et al. Structure and properties of lipase activated by cellulose-silica polyethersulfone membrane for production of pentyl valerate[J]. Carbohydrate Polymers,2020,245:116549. doi: 10.1016/j.carbpol.2020.116549 [35] HUANG Z X, CAO S L, XU P, et al. Preparation of a novel nanobiocatalyst by immobilizing penicillin acylase onto magnetic nanocrystalline cellulose and its use for efficient synthesis of cefaclor[J]. Chemical Engineering Journal,2018,346:361−368. doi: 10.1016/j.cej.2018.04.026 [36] GILLIBERT R, HUANG J Q, ZHANG Y, et al. Food quality control by surface enhanced raman scattering[J]. Trac-Trends in Analytical Chemistry,2018,105:185−190. doi: 10.1016/j.trac.2018.05.009 [37] ZONG C, XU M X, XU L J, et al. Surface-enhanced raman spectroscopy for bioanalysis: Reliability and challenges[J]. Chemical Reviews,2018,118(10):4946−4980. doi: 10.1021/acs.chemrev.7b00668 [38] BETTINI S, PAL S, SAWALHA S, et al. Cellulose-based substrate for SERS-promoted histamine picomolar detection in beverages[J]. Chemistry Select,2019,4(11):2968−2975. [39] ZHANG Q, ZHANG L, WU W B, et al. Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review[J]. Carbohydrate Polymers,2020,229:115454. doi: 10.1016/j.carbpol.2019.115454 [40] HU B X, PU H B, SUN D W. Multifunctional cellulose based substrates for SERS smart sensing: Principles, applications and emerging trends for food safety detection[J]. Trends in Food Science and Technology,2021,110:304−320. doi: 10.1016/j.jpgs.2021.02.005 [41] SUN L, YU Z, ALSAMMARRAIE F K, et al. Development of cellulose nanofiber-based substrates for rapid detection of ferbam in kale by surface-enhanced raman spectroscopy[J]. Food Chemistry,2021,347:129023. doi: 10.1016/j.foodchem.2021.129023 [42] CHEN J, HUANG M Z, KONG L L, et al. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables[J]. Carbohydrate Polymers,2019,205:596−600. doi: 10.1016/j.carbpol.2018.10.059 [43] XIONG Z Y, LIN M S, LIN H T, et al. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice[J]. Carbohydrate Polymers,2018,189:79−86. doi: 10.1016/j.carbpol.2018.02.014 [44] KIM D, KO Y, KWON G, et al. 2,2,6,6-tetramethylpiperidine-1-oxy-oxidized cellulose nanofiber-based nanocomposite papers for facile in situ surface-enhanced raman scattering detection[J]. Acs Sustainable Chemistry and Engineering,2019,7(18):15640−15647. doi: 10.1021/acssuschemeng.9b03680 [45] KWON G, KIM J, KIM D, et al. Nanoporous cellulose paper-based SERS platform for multiplex detection of hazardous pesticides[J]. Cellulose,2019,26(8):4935−4944. doi: 10.1007/s10570-019-02427-8 [46] XIAN L, YOU R Y, LU D C, et al. Surface-modified paper-based SERS substrates for direct-droplet quantitative determination of trace substances[J]. Cellulose,2020,27(3):1483−1495. doi: 10.1007/s10570-019-02855-6 [47] CHEN X, LIN H, XU T, et al. Cellulose nanofibers coated with silver nanoparticles as a flexible nanocomposite for measurement of flusilazole residues in Oolong tea by surface-enhanced Raman spectroscopy[J]. Food Chemistry,2020,315:126276. doi: 10.1016/j.foodchem.2020.126276 [48] THOMAS B, RAJ M C, ATHIRA K B, et al. Nanocellulose, a versatile green platform: From biosources to materials and their applications[J]. Chemical Reviews,2018,118(24):11575−11625. doi: 10.1021/acs.chemrev.7b00627 [49] NIE S, ZHANG C, QI Z, et al. Enzymatic and cold alkaline pretreatments of sugarcane bagasse pulp to produce cellulose nanofibrils using a mechanical method[J]. Industrial Crops and Products,2018,124:435−441. doi: 10.1016/j.indcrop.2018.08.033 [50] NIE S, ZHANG K, LIN X, et al. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils[J]. Carbohydrate Polymers,2018,181:1136−1142. doi: 10.1016/j.carbpol.2017.11.020 [51] ENDES C, CAMARERO-ESPINOSA S, MUELLER S, et al. A critical review of the current knowledge regarding the biological impact of nanocellulose[J]. Journal of Nanobiotechnology,2016,14:78. doi: 10.1186/s12951-016-0230-9
计量
- 文章访问数: 15
- HTML全文浏览量: 26
- PDF下载量: 0
- 被引次数: 0