[1] |
OZTURK B, MCCLEMENTS D J. Progress in natural emulsifiers for utilization in food emulsions[J]. Current Opinion in Food Science,2016,7:1−6.
|
[2] |
ZHANG Y, SUN T, JIANG C. Biomacromolecules as carriers in drug delivery and tissue engineering[J]. Acta Pharm Sin B,2018,8(1):34−50. doi: 10.1016/j.apsb.2017.11.005
|
[3] |
HUANG G, CHEN F, YANG W, et al. Preparation, deproteinization and comparison of bioactive polysaccharides[J]. Trends in Food Science & Technology,2021,109:564−568.
|
[4] |
RICHA R, CHOUDHURY A R. Exploration of polysaccharide based nanoemulsions for stabilization and entrapment of curcumin[J]. International Journal of Biological Macromolecules,2020,156:1287−1296. doi: 10.1016/j.ijbiomac.2019.11.167
|
[5] |
李秀秀, 尚静, 杨曦, 等. 多糖的增稠, 胶凝及乳化特性研究进展[J]. 食品科学,2021,42(15):300−308. [LI X X, SHANG J, YANG X, et al. Research progress in thickening, gelling and emulsifying properties of polysaccharides[J]. Food Science,2021,42(15):300−308. doi: 10.7506/spkx1002-6630-20200617-239
|
[6] |
HUANG H, HUANG G. Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides[J]. Chem Biol Drug Des,2020,96(5):1209−1222. doi: 10.1111/cbdd.13794
|
[7] |
KUMAR M, TOMAR M, SAURABH V, et al. Delineating the inherent functional descriptors and biofunctionalities of pectic polysaccharides[J]. Carbohydr Polym,2021,269:118319. doi: 10.1016/j.carbpol.2021.118319
|
[8] |
LI X L, TU X F, THAKUR K, et al. Effects of different chemical modifications on the antioxidant activities of polysaccharides sequentially extracted from peony seed dreg[J]. Int J Biol Macromol,2018,112:675−685. doi: 10.1016/j.ijbiomac.2018.01.216
|
[9] |
TANG S, WANG T, HUANG C, et al. Sulfated modification of arabinogalactans from Larix principis-rupprechtii and their antitumor activities[J]. Carbohydr Polym,2019,215:207−212. doi: 10.1016/j.carbpol.2019.03.069
|
[10] |
LI Y, YUAN Y, LEI L, et al. Carboxymethylation of polysaccharide from Morchella angusticepes Peck enhances its cholesterol-lowering activity in rats[J]. Carbohydr Polym,2017,172:85−92. doi: 10.1016/j.carbpol.2017.05.033
|
[11] |
SHEN S G, LIN Y H, ZHAO D X, et al. Comparisons of functional properties of polysaccharides from nostoc flagelliforme under three culture conditions[J]. Polymers,2019,11(2):263. doi: 10.3390/polym11020263
|
[12] |
WU D T, HE Y, FU M X, et al. Structural characteristics and biological activities of a pectic-polysaccharide from okra affected by ultrasound assisted metal-free Fenton reaction[J]. Food Hydrocolloids,2022,122:107085. doi: 10.1016/j.foodhyd.2021.107085
|
[13] |
XIAO J, CHEN X, ZHAN Q, et al. Effects of ultrasound on the degradation kinetics, physicochemical properties and prebiotic activity of Flammulina velutipes polysaccharide[J]. Ultrason Sonochem,2022,82:105901. doi: 10.1016/j.ultsonch.2021.105901
|
[14] |
WANG H, CHEN J, REN P, et al. Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide[J]. Ultrason Sonochem,2021,70:105355. doi: 10.1016/j.ultsonch.2020.105355
|
[15] |
ANWAR M, BABU G, BEKHIT A E D. Utilization of ultrasound and pulse electric field for the extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta) peel[J]. Innovative Food Science & Emerging Technologies,2021,70:102691.
|
[16] |
CUI R, ZHU F. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications[J]. Trends in Food Science & Technology,2021,107:491−508.
|
[17] |
LI Y, XIANG D, WANG B, et al. Oil-in-water emulsions stabilized by ultrasonic degraded polysaccharide complex[J]. Molecules,2019,24(6):1097. doi: 10.3390/molecules24061097
|
[18] |
ZHOU L, ZHANG J, XING L, et al. Applications and effects of ultrasound assisted emulsification in the production of food emulsions: A review[J]. Trends in Food Science & Technology,2021,110:493−512.
|
[19] |
路欣彤, 齐欣, 高雪峰, 等. 辐照处理对桦褐孔菌多糖抗疲劳作用的影响[J]. 食品工业科技,2022,43(3):351−357. [LU X T, QI X, GAO X F, et al. Effects of irradiation treatment on anti-fatigue effect of polysaccharides from Phorus betulinus[J]. Science and Technology of Food Industry,2022,43(3):351−357. doi: 10.13386/j.issn1002-0306.2021050192
|
[20] |
周鑫, 舒晓燕, 李鑫奎, 等. 白芷粗多糖的提取工艺优化及辐照对其含量和活性的影响[J]. 食品安全质量检测学报,2021,12(21):8508−8516. [ZHOU X, SHU X Y, LI X K, et al. Optimization of extraction technology of crude polysaccharides from Angelica dahurica and effects of irradiation on its content and activity[J]. Journal of Food Safety and Quality Inspection,2021,12(21):8508−8516. doi: 10.3969/j.issn.2095-0381.2021.21.spaqzljcjs202121030
|
[21] |
HUANG S, CHEN F, CHENG H. Modification and application of polysaccharide from traditional Chinese medicine such as Dendrobium officinale[J]. International Journal of Biological Macromolecules,2020,157:385−393. doi: 10.1016/j.ijbiomac.2020.04.141
|
[22] |
BALJIT SINGH, BALDEV SINGH. Developing a drug delivery carrier from natural polysaccharide exudate gum by graft-copolymerization reaction using high energy radiations[J]. International Journal of Biological Macromolecules,2019,127:450−459. doi: 10.1016/j.ijbiomac.2019.01.075
|
[23] |
KHANDAL D, MOHAMAD S F, COQUERET X. Recent advances in the radiation chemistry of destructured starch and other glucans as model compounds[J].Carbohydrate Chemistry: Chemical and Biological Approaches, 2021, 45: 664.
|
[24] |
B Y C A, C M C B. Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80[J]. Food Hydrocolloids,2016,61:92−101. doi: 10.1016/j.foodhyd.2016.04.047
|
[25] |
KHOSHDOUNI FARAHANI Z, MOUSAVI M, SEYEDAIN ARDEBILI S M, et al. Modification of sodium alginate by octenyl succinic anhydride to fabricate beads for encapsulating jujube extract[J]. Curr Res Food Sci,2022,5:157−166. doi: 10.1016/j.crfs.2021.11.014
|
[26] |
XU Y, WU Y J, SUN P L, et al. Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action[J]. Int J Biol Macromol,2019,132:970−977. doi: 10.1016/j.ijbiomac.2019.03.213
|
[27] |
SIMSEK M, ASIYANBI-HAMMED T T, RASAQ N, et al. Progress in bioactive polysaccharide-derivatives: A review[J]. Food Reviews International,2021:1−16.
|
[28] |
ZHANG H, QIAN Y, CHEN S, et al. Physicochemical characteristics and emulsification properties of cellulose nanocrystals stabilized O/W pickering emulsions with high -OSO3− groups[J]. Food Hydrocolloids,2019,96:267−277. doi: 10.1016/j.foodhyd.2019.05.023
|
[29] |
XIAO H, FU X, CAO C, et al. Sulfated modification, characterization, antioxidant and hypoglycemic activities of polysaccharides from Sargassum pallidum[J]. Int J Biol Macromol,2019,121:407−414. doi: 10.1016/j.ijbiomac.2018.09.197
|
[30] |
CHEN L, HUANG G. Antioxidant activities of sulfated pumpkin polysaccharides[J]. Int J Biol Macromol,2019,126:743−746. doi: 10.1016/j.ijbiomac.2018.12.261
|
[31] |
XU Y, SONG S, WEI Y, et al. Sulfated modification of the polysaccharide from Sphallerocarpus gracilis and its antioxidant activities[J]. Int J Biol Macromol,2016,87:180−190. doi: 10.1016/j.ijbiomac.2016.02.037
|
[32] |
肖恩来, 马永强, 王鑫, 等. 响应面优化硫酸法改性甜玉米芯多糖研究[J]. 中国食品添加剂,2019,30(2):71−76. [XIAO E L, MA Y Q, WANG X, et al. Modification of sweet corn cob polysaccharide by response surface optimization with sulfuric acid method[J]. Chinese Food Additives,2019,30(2):71−76. doi: 10.3969/j.issn.1006-2513.2019.02.004
|
[33] |
高爽, 王鑫, 马永强, 等. 硫酸酯化甜玉米芯多糖的制备[J]. 哈尔滨商业大学学报(自然科学版),2016,32(5):537−541. [GAO S, WANG X, MA Y Q, et al. Preparation of sulfated sweet corn cob polysaccharide[J]. Journal of Harbin University of Commerce (Natural Science Edition),2016,32(5):537−541.
|
[34] |
霍达. 水溶性玉竹多糖的分离纯化、结构表征、硫酸化修饰及活性研究[D]. 广州: 华南理工大学, 2020HUO D. Isolation, purification, structure characterization, sulfuration modification and activity of water-soluble Polygonatum polysaccharide[D]. Guangzhou: South China University of Technology, 2020.
|
[35] |
XIE L, SHEN M, HONG Y, et al. Chemical modifications of polysaccharides and their anti-tumor activities[J]. Carbohydr Polym,2020,229:115436. doi: 10.1016/j.carbpol.2019.115436
|
[36] |
王瑞芳, 陈发河, 吴光斌, 等. 三氧化硫吡啶法酯化修饰海参岩藻聚糖硫酸酯的研究[J]. 食品与发酵工业,2020,46(4):113−117, 124. [WANG R F, CHEN F H, WU G B, et al. Study on the esterification of fucoidan sulfate ester of sea cucumber by thiopyridine trioxide method[J]. Food and Fermentation Industries,2020,46(4):113−117, 124. doi: 10.13995/j.cnki.11-1802/ts.022219
|
[37] |
ZHANG Z, LIU Z, TAO X, et al. Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities[J]. Carbohydr Polym,2016,153:25−33. doi: 10.1016/j.carbpol.2016.07.084
|
[38] |
LIU Y, TANG Q, DUAN X, et al. Antioxidant and anticoagulant activities of mycelia polysaccharides from Catathelasma ventricosum after sulfated modification[J]. Industrial Crops and Products,2018,112:53−60. doi: 10.1016/j.indcrop.2017.10.064
|
[39] |
石华乐, 秦玉昌, 姚怡莎, 等. 羧甲基化改性对不同分子量水溶性大豆多糖乳化性的影响[J]. 食品安全质量检测学报,2015,6(5):1790−1798. [SHI H L, QIN Y C, YAO Y S, et al. Effects of carboxymethylation modification on emulsification of water-soluble soybean polysaccharides with different molecular weights[J]. Journal of Food Safety and Quality Inspection,2015,6(5):1790−1798. doi: 10.19812/j.cnki.jfsq11-5956/ts.2015.05.047
|
[40] |
燕文胜, 张亮亮, 李焕洋, 等. 化学改性对连翘不溶性膳食纤维理化性质、结构及乳化稳定性的影响[J]. 食品工业科技,2022,43(19):61−68. [YAN W S, ZHANG L L, LI H Y, et al. Effects of chemical modification on physicochemical properties, structure and emulsification stability of forsythia insoluble dietary fiber[J]. Science and Technology of Food Industry,2022,43(19):61−68. doi: 10.13386/j.issn1002-0306.2021120175
|
[41] |
LIU W, HU C, LIU Y, et al. Preparation, characterization, and α-glycosidase inhibition activity of a carboxymethylated polysaccharide from the residue of Sarcandra glabra (Thunb.) Nakai[J]. International Journal of Biological Macromolecules,2017,99:454−464. doi: 10.1016/j.ijbiomac.2017.02.065
|
[42] |
LIU Y, LU K, HU X, et al. Structure, properties and potential applications of phytoglycogen and waxy starch subjected to carboxymethylation[J]. Carbohydr Polym,2020,234:115908. doi: 10.1016/j.carbpol.2020.115908
|
[43] |
LI Y T, CHEN B J, WU W D, et al. Antioxidant and antimicrobial evaluation of carboxymethylated and hydroxamated degraded polysaccharides from Sargassum fusiforme[J]. Int J Biol Macromol,2018,118(Pt B):1550−1557.
|
[44] |
KRISZTINA H, KUTTEL M M, GIANLUIGI D B, et al. O-acetylation of typhoid capsular polysaccharide confers polysaccharide rigidity and immunodominance by masking additional epitopes[J]. Vaccine,2020:3866−3875.
|
[45] |
邵珠领, 吴艳丽, 张宇, 等. 桦褐孔菌多糖的乙酰化修饰及其抗氧化活性[J]. 食品工业科技,2019,40(9):73−77. [SHAO Z L, WU Y L, ZHANG Y, et al. Acetylation modification and antioxidant activity of polysaccharides from Porus betulinus[J]. Science and Technology of Food Industry,2019,40(9):73−77. doi: 10.13386/j.issn1002-0306.2019.09.014
|
[46] |
ABUDUWAILI A, NUERXIATI R, MUTAILIFU P, et al. Isolation, structural modification, characterization, and bioactivity of polysaccharides from Folium isatidis[J]. Industrial Crops and Products,2022,176:114319. doi: 10.1016/j.indcrop.2021.114319
|
[47] |
XU T, JIANG C, ZHOU Q, et al. Preparation and characterization of octenyl succinic anhydride modified waxy maize starch hydrolyzate/chitosan complexes with enhanced interfacial properties[J]. Carbohydrate Polymers,2021,267:118228. doi: 10.1016/j.carbpol.2021.118228
|
[48] |
杨雪, 王姝雯, 刘庆庆, 等. 大米抗性辛烯基琥珀酸淀粉酯的制备及特性分析[J]. 食品工业科技,2022,43(11):167−174. [YANG X, WANG S W, LIU Q Q, et al. Preparation and property analysis of rice octenyl succinate resistant starch ester[J]. Science and Technology of Food Industry,2022,43(11):167−174. doi: 10.13386/j.issn1002-0306.2021090064
|
[49] |
CHEN H, CHEN F, XIAO Q, et al. Structure and physicochemical properties of amphiphilic agar modified with octenyl succinic anhydride[J]. Carbohydrate Polymers,2021,251:117031. doi: 10.1016/j.carbpol.2020.117031
|
[50] |
ZHANG Y, DAI Y, HOU H, et al. Ultrasound-assisted preparation of octenyl succinic anhydride modified starch and its influence mechanism on the quality[J]. Food Chem X,2020,5:100077. doi: 10.1016/j.fochx.2020.100077
|
[51] |
JI S, XU T, HUANG W, et al. Atmospheric pressure plasma jet pretreatment to facilitate cassava starch modification with octenyl succinic anhydride[J]. Food Chem,2022,370:130922. doi: 10.1016/j.foodchem.2021.130922
|
[52] |
SILVA E K, ANTHERO A, EMERICK L B, et al. Low-frequency ultrasound-assisted esterification of Bixa orellana L. seed starch with octenyl succinic anhydride[J]. Int J Biol Macromol,2022,207:1−8. doi: 10.1016/j.ijbiomac.2022.02.090
|
[53] |
LIU X, DING S, WU J, et al. Molecular structures of octenyl succinic anhydride modified starches in relation to their ability to stabilize high internal phase emulsions and oleogels[J]. Food Hydrocolloids,2021,120:106953. doi: 10.1016/j.foodhyd.2021.106953
|
[54] |
PUNIA S, SANDHU K S, DHULL S B, et al. Dynamic, shear and pasting behaviour of native and octenyl succinic anhydride (OSA) modified wheat starch and their utilization in preparation of edible films[J]. International Journal of Biological Macromolecules,2019,133:110−116. doi: 10.1016/j.ijbiomac.2019.04.089
|
[55] |
SWEEDMAN M C, TIZZOTTI M J, SCHÄFER C, et al. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review[J]. Carbohydrate Polymers,2013,92(1):905−920. doi: 10.1016/j.carbpol.2012.09.040
|
[56] |
XIAO Q, WENG H, CHEN G, et al. Preparation and characterization of octenyl succinic anhydride modified agarose derivative[J]. Food Chem,2019,279:30−39. doi: 10.1016/j.foodchem.2018.11.133
|
[57] |
GAHRUIE H H, ESKANDARI M H, KHALESI M, et al. Rheological and interfacial properties of basil seed gum modified with octenyl succinic anhydride[J]. Food Hydrocolloids,2020,101:105489. doi: 10.1016/j.foodhyd.2019.105489
|
[58] |
SHOKRI Z, SEIDI F, SAEB M R, et al. Elucidating the impact of enzymatic modifications on the structure, properties, and applications of cellulose, chitosan, starch and their derivatives: A review[J]. Materials Today Chemistry,2022,24:100780. doi: 10.1016/j.mtchem.2022.100780
|
[59] |
ZOU M, CHEN Y, SUN D, et al. Immunomodulatory acidic polysaccharides from Zizyphus jujuba cv. Huizao: Insights into their chemical characteristics and modes of action[J]. Food Chemistry,2018,258:35−42. doi: 10.1016/j.foodchem.2018.03.052
|
[60] |
HU T G, ZOU Y X, LI E N, et al. Effects of enzymatic hydrolysis on the structural, rheological, and functional properties of mulberry leaf polysaccharide[J]. Food Chemistry,2021,355:129608. doi: 10.1016/j.foodchem.2021.129608
|
[61] |
WANG Z, XIE J, SHEN M, et al. Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities[J]. Trends in Food Science & Technology,2018,74:147−157.
|
[62] |
ZHANG R, BELWAL T, LI L, et al. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review[J]. Carbohydr Polym,2020,242:116388. doi: 10.1016/j.carbpol.2020.116388
|
[63] |
SHAO P, FENG J, SUN P, et al. Recent advances in improving stability of food emulsion by plant polysaccharides[J]. Food Res Int,2020,137:109376. doi: 10.1016/j.foodres.2020.109376
|
[64] |
GAVAHIAN M, CHEN Y M, MOUSAVI KHANEGHAH A, et al. In-pack sonication technique for edible emulsions: Understanding the impact of acacia gum and lecithin emulsifiers and ultrasound homogenization on salad dressing emulsions stability[J]. Food Hydrocolloids,2018,83:79−87. doi: 10.1016/j.foodhyd.2018.04.039
|
[65] |
WANG L, DING J, FANG Y, et al. Effect of ultrasonic power on properties of edible composite films based on rice protein hydrolysates and chitosan[J]. Ultrasonics Sonochemistry,2020,65:105049. doi: 10.1016/j.ultsonch.2020.105049
|
[66] |
FENG L, CAO Y, XU D, et al. Molecular weight distribution, rheological property and structural changes of sodium alginate induced by ultrasound[J]. Ultrasonics Sonochemistry,2017,34(Complete):609−615.
|
[67] |
WANG W, FENG Y, CHEN W, et al. Citrus pectin modified by microfluidization and ultrasonication: Improved emulsifying and encapsulation properties[J]. Ultrasonics Sonochemistry,2021,70:105322. doi: 10.1016/j.ultsonch.2020.105322
|
[68] |
HAMDANI A M, WANI I A, GANI A, et al. Effect of gamma irradiation on physicochemical, structural and rheological properties of plant exudate gums[J]. Innovative Food Science & Emerging Technologies,2017,44:74−82.
|
[69] |
KHAN A A, GANI A, MASOODI F A, et al. Structural, thermal, functional, antioxidant & antimicrobial properties of beta-D-glucan extracted from baker's yeast (Saccharomyces cereviseae) effect of gamma-irradiation[J]. Carbohydrate Polymers,2016,140:442−450. doi: 10.1016/j.carbpol.2016.01.003
|
[70] |
HAN J A, LIM S T. Effect of γ-irradiation on pasting and emulsification properties of octenyl succinylated rice starches[J]. Carbohydrate Polymers,2012,90(4):1480−1485. doi: 10.1016/j.carbpol.2012.07.018
|
[71] |
DICKINSON E. Hydrocolloids acting as emulsifying agents-How do they do it?[J]. Food Hydrocolloids,2018,78:2−14. doi: 10.1016/j.foodhyd.2017.01.025
|
[72] |
MCCLEMENTS D J, BAI L, CHUNG C. Recent Advances in the utilization of natural emulsifiers to form and stabilize emulsions[J]. Annu Rev Food Sci Technol,2017,8:205−236. doi: 10.1146/annurev-food-030216-030154
|
[73] |
PRASHER P, SHARMA M, MEHTA M, et al. Current-status and applications of polysaccharides in drug delivery systems[J]. Colloid and Interface Science Communications,2021,42:100418. doi: 10.1016/j.colcom.2021.100418
|
[74] |
USMAN M, ZHANG C, PATIL P J, et al. Potential applications of hydrophobically modified inulin as an active ingredient in functional foods and drugs: A review[J]. Carbohydr Polym,2021,252:117176. doi: 10.1016/j.carbpol.2020.117176
|
[75] |
LIU C M, GUO X J, LIANG R H, et al. Alkylated pectin: Molecular characterization, conformational change and gel property[J]. Food Hydrocolloids,2017,69:341−349. doi: 10.1016/j.foodhyd.2017.03.008
|
[76] |
LI J, HU X, LI X, et al. Effects of acetylation on the emulsifying properties of Artemisia sphaerocephala Krasch polysaccharide[J]. Carbohydrate Polymers,2016,144:531−540. doi: 10.1016/j.carbpol.2016.02.039
|
[77] |
HUANG Z, ZONG M H, LOU W Y. Effect of acetylation modification on the emulsifying and antioxidant properties of polysaccharide from Millettia speciosa Champ[J]. Food Hydrocolloids,2022,124:107217. doi: 10.1016/j.foodhyd.2021.107217
|
[78] |
LI S, WILLOUGHBY J A, ROJAS O J. Oil-in-water emulsions stabilized by carboxymethylated lignins: Properties and energy prospects[J]. Chem Sus Chem,2016,9(17):2460−2469. doi: 10.1002/cssc.201600704
|
[79] |
LIN Q, LIANG R, ZHONG F, et al. Effect of degree of octenyl succinic anhydride (OSA) substitution on the digestion of emulsions and the bioaccessibility of β-carotene in OSA-modified-starch-stabilized-emulsions[J]. Food Hydrocolloids,2018,84:303−312. doi: 10.1016/j.foodhyd.2018.05.056
|
[80] |
LI J, LI Y, ZHONG J, et al. Effect of cellulose nanocrystals on the formation and stability of oil-in-water emulsion formed by octenyl succinic anhydride starch[J]. LWT,2021,151:112214. doi: 10.1016/j.lwt.2021.112214
|
[81] |
PAN Y, WU Z, ZHANG B, et al. Preparation and characterization of emulsion stabilized by octenyl succinic anhydride-modified dextrin for improving storage stability and curcumin encapsulation[J]. Food Chem,2019,294:326−332. doi: 10.1016/j.foodchem.2019.05.053
|
[82] |
GAO W, LIU P, WANG B, et al. Synthesis, physicochemical and emulsifying properties of C-3 octenyl succinic anhydride-modified corn starch[J]. Food Hydrocolloids,2021,120:106961. doi: 10.1016/j.foodhyd.2021.106961
|
[83] |
LI J, HU X, YAN X, et al. Effects of hydrolysis by xylanase on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide[J]. Food Hydrocolloids,2018,76:158−163. doi: 10.1016/j.foodhyd.2016.12.015
|
[84] |
CHEN H M, FU X, LUO Z G. Effect of molecular structure on emulsifying properties of sugar beet pulp pectin[J]. Food Hydrocolloids,2016,54:99−106. doi: 10.1016/j.foodhyd.2015.09.021
|
[85] |
SHI F, TIAN X, MCCLEMENTS D J, et al. Influence of molecular weight of an anionic marine polysaccharide (Sulfated fucan) on the stability and digestibility of multilayer emulsions: Establishment of structure-function relationships[J]. Food Hydrocolloids,2021,113:106418. doi: 10.1016/j.foodhyd.2020.106418
|
[86] |
ZHANG L, XIONG T, WANG X F, et al. Pickering emulsifiers based on enzymatically modified quinoa starches: Preparation, microstructures, hydrophilic property and emulsifying property[J]. International Journal of Biological Macromolecules,2021,190:130−140. doi: 10.1016/j.ijbiomac.2021.08.212
|
[87] |
AI C, MENG H, LIN J, et al. Emulsification properties of alkaline soluble polysaccharide from sugar beet pulp: Effect of acetylation and methoxylation[J]. Food Hydrocolloids,2022,124:107361. doi: 10.1016/j.foodhyd.2021.107361
|
[88] |
WANI T A, SHAH A G, WANI S M, et al. Suitability of different food grade materials for the encapsulation of some functional foods well reported for their advantages and susceptibility[J]. C R C Critical Reviews in Food Technology,2016,56(15):2431−2454. doi: 10.1080/10408398.2013.845814
|
[89] |
FENG H, CHAO L, TAN C P, et al. Physicochemical properties and in vitro bioaccessibility of lutein loaded emulsions stabilized by corn fiber gums[J]. RSC Advances,2017,7:38243−38250. doi: 10.1039/C7RA04943A
|
[90] |
LEE L W, LIU X, WONG W, et al. Effects of sucrose monopalmitate (P90), Tween 80 and modified starch on coffee aroma retention and release in coffee oil-based emulsions[J]. Food Hydrocolloids,2017,66(MAY):128−135.
|
[91] |
PAN Y, WU Z, ZHANG B, et al. Preparation and characterization of emulsion stabilized by octenyl succinic anhydride-modified dextrin for improving storage stability and curcumin encapsulation[J]. Food Chemistry,2019,294(OCT.1):326−332.
|
[92] |
ESPINAL-RUIZ M, RESTREPO-SANCHEZ L P, NARVAEZ-CUENCA C E, et al. Impact of pectin properties on lipid digestion under simulated gastrointestinal conditions: Comparison of citrus and banana passion fruit (Passiflora tripartita var. mollissima) pectins[J]. Food Hydrocolloids,2016,52(JAN):329−342.
|
[93] |
SARKAR A, LI H, CRAY D, et al. Composite whey protein–cellulose nanocrystals at oil-water interface: Towards delaying lipid digestion[J]. Food Hydrocolloids,2018,77:436−444. doi: 10.1016/j.foodhyd.2017.10.020
|
[94] |
QIN D, YANG X, GAO S, et al. Influence of hydrocolloids (dietary fibers) on lipid digestion of protein-stabilized emulsions: Comparison of neutral, anionic, and cationic polysaccharides[J]. Journal of Food Science,2016,81(7):C1636−C45. doi: 10.1111/1750-3841.13361
|
[95] |
孙瑞. 用于固定脂质微纳米载体的水凝胶珠的制备与评价[D]. 南京: 东南大学, 2021SUN R. Preparation and evaluation of hydrogel beads for immobilization of lipid micro/nano carriers[D]. Nanjing: Southeast University, 2021.
|
[96] |
BAI L, LÜ S, XIANG W, et al. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion[J]. Food Hydrocolloids,2019,96:709−716. doi: 10.1016/j.foodhyd.2019.04.039
|
[97] |
INFANTES-GARCIA M R, VERKEMPINCK S H E, DEL CASTILLO-SANTAELLA T, et al. In vitro gastric lipid digestion of emulsions with mixed emulsifiers: Correlation between lipolysis kinetics and interfacial characteristics[J]. Food Hydrocolloids,2022,128:107576. doi: 10.1016/j.foodhyd.2022.107576
|
[98] |
TAN Y, ZHANG Z, MURIEL MUNDO J, et al. Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Emulsifier type[J]. Food Research International,2020,137:109739. doi: 10.1016/j.foodres.2020.109739
|