留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多糖的修饰及其改善乳化性能的研究进展

黄小倩 李佳琪 孙家会 夏光华

黄小倩,李佳琪,孙家会,等. 多糖的修饰及其改善乳化性能的研究进展[J]. 食品工业科技,2023,44(9):437−445. doi: 10.13386/j.issn1002-0306.2022060256
引用本文: 黄小倩,李佳琪,孙家会,等. 多糖的修饰及其改善乳化性能的研究进展[J]. 食品工业科技,2023,44(9):437−445. doi: 10.13386/j.issn1002-0306.2022060256
HUANG Xiaoqian, LI Jiaqi, SUN Jiahui, et al. Research Progress of Modification Methods for Improving Emulsifying Properties of Polysaccharides[J]. Science and Technology of Food Industry, 2023, 44(9): 437−445. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060256
Citation: HUANG Xiaoqian, LI Jiaqi, SUN Jiahui, et al. Research Progress of Modification Methods for Improving Emulsifying Properties of Polysaccharides[J]. Science and Technology of Food Industry, 2023, 44(9): 437−445. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060256

多糖的修饰及其改善乳化性能的研究进展

doi: 10.13386/j.issn1002-0306.2022060256
基金项目: 国家自然科学基金项目(31860450)。
详细信息
    作者简介:

    黄小倩(1997−),女,硕士研究生,研究方向:水产品加工与贮藏,E-mail:1349081004@qq.com

    通讯作者:

    夏光华(1987−),男,博士,副教授,研究方向:海洋生物资源利用、水产品加工及贮藏工程,E-mail:xiaguanghua2011@126.com

  • 中图分类号: TS201.2

Research Progress of Modification Methods for Improving Emulsifying Properties of Polysaccharides

  • 摘要: 天然多糖因其结构稳定、分子量高、具有多种生物活性、安全性高等优点而表现出良好的乳化和增稠作用,被作为乳化剂广泛应用于食品工业。然而,多糖的高亲水性、难溶解性等特点导致其在高温、高盐等条件下乳化性能较差,限制了其广泛应用。通过对多糖进行修饰可以改变其分子量、结构、疏水性等功能特性,提升其乳化性能。本文综述了物理、化学和生物等修饰方法对多糖分子结构、乳化性能等的影响及修饰多糖在乳状液中应用的研究现状和进展,分析了目前修饰方法中存在的问题,并对未来发展趋势进行了展望,旨在为改善多糖乳化性能的进一步研究和拓宽其应用领域提供理论依据。

     

  • 图  不同DS的疏水修饰多糖的界面行为和乳液稳定机理

    Figure  1.  Interfacial behavior and emulsion stabilization mechanism of hydrophobic modified polysaccharides with different DS

  • [1] OZTURK B, MCCLEMENTS D J. Progress in natural emulsifiers for utilization in food emulsions[J]. Current Opinion in Food Science,2016,7:1−6.
    [2] ZHANG Y, SUN T, JIANG C. Biomacromolecules as carriers in drug delivery and tissue engineering[J]. Acta Pharm Sin B,2018,8(1):34−50. doi: 10.1016/j.apsb.2017.11.005
    [3] HUANG G, CHEN F, YANG W, et al. Preparation, deproteinization and comparison of bioactive polysaccharides[J]. Trends in Food Science & Technology,2021,109:564−568.
    [4] RICHA R, CHOUDHURY A R. Exploration of polysaccharide based nanoemulsions for stabilization and entrapment of curcumin[J]. International Journal of Biological Macromolecules,2020,156:1287−1296. doi: 10.1016/j.ijbiomac.2019.11.167
    [5] 李秀秀, 尚静, 杨曦, 等. 多糖的增稠, 胶凝及乳化特性研究进展[J]. 食品科学,2021,42(15):300−308. [LI X X, SHANG J, YANG X, et al. Research progress in thickening, gelling and emulsifying properties of polysaccharides[J]. Food Science,2021,42(15):300−308. doi: 10.7506/spkx1002-6630-20200617-239
    [6] HUANG H, HUANG G. Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides[J]. Chem Biol Drug Des,2020,96(5):1209−1222. doi: 10.1111/cbdd.13794
    [7] KUMAR M, TOMAR M, SAURABH V, et al. Delineating the inherent functional descriptors and biofunctionalities of pectic polysaccharides[J]. Carbohydr Polym,2021,269:118319. doi: 10.1016/j.carbpol.2021.118319
    [8] LI X L, TU X F, THAKUR K, et al. Effects of different chemical modifications on the antioxidant activities of polysaccharides sequentially extracted from peony seed dreg[J]. Int J Biol Macromol,2018,112:675−685. doi: 10.1016/j.ijbiomac.2018.01.216
    [9] TANG S, WANG T, HUANG C, et al. Sulfated modification of arabinogalactans from Larix principis-rupprechtii and their antitumor activities[J]. Carbohydr Polym,2019,215:207−212. doi: 10.1016/j.carbpol.2019.03.069
    [10] LI Y, YUAN Y, LEI L, et al. Carboxymethylation of polysaccharide from Morchella angusticepes Peck enhances its cholesterol-lowering activity in rats[J]. Carbohydr Polym,2017,172:85−92. doi: 10.1016/j.carbpol.2017.05.033
    [11] SHEN S G, LIN Y H, ZHAO D X, et al. Comparisons of functional properties of polysaccharides from nostoc flagelliforme under three culture conditions[J]. Polymers,2019,11(2):263. doi: 10.3390/polym11020263
    [12] WU D T, HE Y, FU M X, et al. Structural characteristics and biological activities of a pectic-polysaccharide from okra affected by ultrasound assisted metal-free Fenton reaction[J]. Food Hydrocolloids,2022,122:107085. doi: 10.1016/j.foodhyd.2021.107085
    [13] XIAO J, CHEN X, ZHAN Q, et al. Effects of ultrasound on the degradation kinetics, physicochemical properties and prebiotic activity of Flammulina velutipes polysaccharide[J]. Ultrason Sonochem,2022,82:105901. doi: 10.1016/j.ultsonch.2021.105901
    [14] WANG H, CHEN J, REN P, et al. Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide[J]. Ultrason Sonochem,2021,70:105355. doi: 10.1016/j.ultsonch.2020.105355
    [15] ANWAR M, BABU G, BEKHIT A E D. Utilization of ultrasound and pulse electric field for the extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta) peel[J]. Innovative Food Science & Emerging Technologies,2021,70:102691.
    [16] CUI R, ZHU F. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications[J]. Trends in Food Science & Technology,2021,107:491−508.
    [17] LI Y, XIANG D, WANG B, et al. Oil-in-water emulsions stabilized by ultrasonic degraded polysaccharide complex[J]. Molecules,2019,24(6):1097. doi: 10.3390/molecules24061097
    [18] ZHOU L, ZHANG J, XING L, et al. Applications and effects of ultrasound assisted emulsification in the production of food emulsions: A review[J]. Trends in Food Science & Technology,2021,110:493−512.
    [19] 路欣彤, 齐欣, 高雪峰, 等. 辐照处理对桦褐孔菌多糖抗疲劳作用的影响[J]. 食品工业科技,2022,43(3):351−357. [LU X T, QI X, GAO X F, et al. Effects of irradiation treatment on anti-fatigue effect of polysaccharides from Phorus betulinus[J]. Science and Technology of Food Industry,2022,43(3):351−357. doi: 10.13386/j.issn1002-0306.2021050192
    [20] 周鑫, 舒晓燕, 李鑫奎, 等. 白芷粗多糖的提取工艺优化及辐照对其含量和活性的影响[J]. 食品安全质量检测学报,2021,12(21):8508−8516. [ZHOU X, SHU X Y, LI X K, et al. Optimization of extraction technology of crude polysaccharides from Angelica dahurica and effects of irradiation on its content and activity[J]. Journal of Food Safety and Quality Inspection,2021,12(21):8508−8516. doi: 10.3969/j.issn.2095-0381.2021.21.spaqzljcjs202121030
    [21] HUANG S, CHEN F, CHENG H. Modification and application of polysaccharide from traditional Chinese medicine such as Dendrobium officinale[J]. International Journal of Biological Macromolecules,2020,157:385−393. doi: 10.1016/j.ijbiomac.2020.04.141
    [22] BALJIT SINGH, BALDEV SINGH. Developing a drug delivery carrier from natural polysaccharide exudate gum by graft-copolymerization reaction using high energy radiations[J]. International Journal of Biological Macromolecules,2019,127:450−459. doi: 10.1016/j.ijbiomac.2019.01.075
    [23] KHANDAL D, MOHAMAD S F, COQUERET X. Recent advances in the radiation chemistry of destructured starch and other glucans as model compounds[J].Carbohydrate Chemistry: Chemical and Biological Approaches, 2021, 45: 664.
    [24] B Y C A, C M C B. Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80[J]. Food Hydrocolloids,2016,61:92−101. doi: 10.1016/j.foodhyd.2016.04.047
    [25] KHOSHDOUNI FARAHANI Z, MOUSAVI M, SEYEDAIN ARDEBILI S M, et al. Modification of sodium alginate by octenyl succinic anhydride to fabricate beads for encapsulating jujube extract[J]. Curr Res Food Sci,2022,5:157−166. doi: 10.1016/j.crfs.2021.11.014
    [26] XU Y, WU Y J, SUN P L, et al. Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action[J]. Int J Biol Macromol,2019,132:970−977. doi: 10.1016/j.ijbiomac.2019.03.213
    [27] SIMSEK M, ASIYANBI-HAMMED T T, RASAQ N, et al. Progress in bioactive polysaccharide-derivatives: A review[J]. Food Reviews International,2021:1−16.
    [28] ZHANG H, QIAN Y, CHEN S, et al. Physicochemical characteristics and emulsification properties of cellulose nanocrystals stabilized O/W pickering emulsions with high -OSO3 groups[J]. Food Hydrocolloids,2019,96:267−277. doi: 10.1016/j.foodhyd.2019.05.023
    [29] XIAO H, FU X, CAO C, et al. Sulfated modification, characterization, antioxidant and hypoglycemic activities of polysaccharides from Sargassum pallidum[J]. Int J Biol Macromol,2019,121:407−414. doi: 10.1016/j.ijbiomac.2018.09.197
    [30] CHEN L, HUANG G. Antioxidant activities of sulfated pumpkin polysaccharides[J]. Int J Biol Macromol,2019,126:743−746. doi: 10.1016/j.ijbiomac.2018.12.261
    [31] XU Y, SONG S, WEI Y, et al. Sulfated modification of the polysaccharide from Sphallerocarpus gracilis and its antioxidant activities[J]. Int J Biol Macromol,2016,87:180−190. doi: 10.1016/j.ijbiomac.2016.02.037
    [32] 肖恩来, 马永强, 王鑫, 等. 响应面优化硫酸法改性甜玉米芯多糖研究[J]. 中国食品添加剂,2019,30(2):71−76. [XIAO E L, MA Y Q, WANG X, et al. Modification of sweet corn cob polysaccharide by response surface optimization with sulfuric acid method[J]. Chinese Food Additives,2019,30(2):71−76. doi: 10.3969/j.issn.1006-2513.2019.02.004
    [33] 高爽, 王鑫, 马永强, 等. 硫酸酯化甜玉米芯多糖的制备[J]. 哈尔滨商业大学学报(自然科学版),2016,32(5):537−541. [GAO S, WANG X, MA Y Q, et al. Preparation of sulfated sweet corn cob polysaccharide[J]. Journal of Harbin University of Commerce (Natural Science Edition),2016,32(5):537−541.
    [34] 霍达. 水溶性玉竹多糖的分离纯化、结构表征、硫酸化修饰及活性研究[D]. 广州: 华南理工大学, 2020

    HUO D. Isolation, purification, structure characterization, sulfuration modification and activity of water-soluble Polygonatum polysaccharide[D]. Guangzhou: South China University of Technology, 2020.
    [35] XIE L, SHEN M, HONG Y, et al. Chemical modifications of polysaccharides and their anti-tumor activities[J]. Carbohydr Polym,2020,229:115436. doi: 10.1016/j.carbpol.2019.115436
    [36] 王瑞芳, 陈发河, 吴光斌, 等. 三氧化硫吡啶法酯化修饰海参岩藻聚糖硫酸酯的研究[J]. 食品与发酵工业,2020,46(4):113−117, 124. [WANG R F, CHEN F H, WU G B, et al. Study on the esterification of fucoidan sulfate ester of sea cucumber by thiopyridine trioxide method[J]. Food and Fermentation Industries,2020,46(4):113−117, 124. doi: 10.13995/j.cnki.11-1802/ts.022219
    [37] ZHANG Z, LIU Z, TAO X, et al. Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities[J]. Carbohydr Polym,2016,153:25−33. doi: 10.1016/j.carbpol.2016.07.084
    [38] LIU Y, TANG Q, DUAN X, et al. Antioxidant and anticoagulant activities of mycelia polysaccharides from Catathelasma ventricosum after sulfated modification[J]. Industrial Crops and Products,2018,112:53−60. doi: 10.1016/j.indcrop.2017.10.064
    [39] 石华乐, 秦玉昌, 姚怡莎, 等. 羧甲基化改性对不同分子量水溶性大豆多糖乳化性的影响[J]. 食品安全质量检测学报,2015,6(5):1790−1798. [SHI H L, QIN Y C, YAO Y S, et al. Effects of carboxymethylation modification on emulsification of water-soluble soybean polysaccharides with different molecular weights[J]. Journal of Food Safety and Quality Inspection,2015,6(5):1790−1798. doi: 10.19812/j.cnki.jfsq11-5956/ts.2015.05.047
    [40] 燕文胜, 张亮亮, 李焕洋, 等. 化学改性对连翘不溶性膳食纤维理化性质、结构及乳化稳定性的影响[J]. 食品工业科技,2022,43(19):61−68. [YAN W S, ZHANG L L, LI H Y, et al. Effects of chemical modification on physicochemical properties, structure and emulsification stability of forsythia insoluble dietary fiber[J]. Science and Technology of Food Industry,2022,43(19):61−68. doi: 10.13386/j.issn1002-0306.2021120175
    [41] LIU W, HU C, LIU Y, et al. Preparation, characterization, and α-glycosidase inhibition activity of a carboxymethylated polysaccharide from the residue of Sarcandra glabra (Thunb.) Nakai[J]. International Journal of Biological Macromolecules,2017,99:454−464. doi: 10.1016/j.ijbiomac.2017.02.065
    [42] LIU Y, LU K, HU X, et al. Structure, properties and potential applications of phytoglycogen and waxy starch subjected to carboxymethylation[J]. Carbohydr Polym,2020,234:115908. doi: 10.1016/j.carbpol.2020.115908
    [43] LI Y T, CHEN B J, WU W D, et al. Antioxidant and antimicrobial evaluation of carboxymethylated and hydroxamated degraded polysaccharides from Sargassum fusiforme[J]. Int J Biol Macromol,2018,118(Pt B):1550−1557.
    [44] KRISZTINA H, KUTTEL M M, GIANLUIGI D B, et al. O-acetylation of typhoid capsular polysaccharide confers polysaccharide rigidity and immunodominance by masking additional epitopes[J]. Vaccine,2020:3866−3875.
    [45] 邵珠领, 吴艳丽, 张宇, 等. 桦褐孔菌多糖的乙酰化修饰及其抗氧化活性[J]. 食品工业科技,2019,40(9):73−77. [SHAO Z L, WU Y L, ZHANG Y, et al. Acetylation modification and antioxidant activity of polysaccharides from Porus betulinus[J]. Science and Technology of Food Industry,2019,40(9):73−77. doi: 10.13386/j.issn1002-0306.2019.09.014
    [46] ABUDUWAILI A, NUERXIATI R, MUTAILIFU P, et al. Isolation, structural modification, characterization, and bioactivity of polysaccharides from Folium isatidis[J]. Industrial Crops and Products,2022,176:114319. doi: 10.1016/j.indcrop.2021.114319
    [47] XU T, JIANG C, ZHOU Q, et al. Preparation and characterization of octenyl succinic anhydride modified waxy maize starch hydrolyzate/chitosan complexes with enhanced interfacial properties[J]. Carbohydrate Polymers,2021,267:118228. doi: 10.1016/j.carbpol.2021.118228
    [48] 杨雪, 王姝雯, 刘庆庆, 等. 大米抗性辛烯基琥珀酸淀粉酯的制备及特性分析[J]. 食品工业科技,2022,43(11):167−174. [YANG X, WANG S W, LIU Q Q, et al. Preparation and property analysis of rice octenyl succinate resistant starch ester[J]. Science and Technology of Food Industry,2022,43(11):167−174. doi: 10.13386/j.issn1002-0306.2021090064
    [49] CHEN H, CHEN F, XIAO Q, et al. Structure and physicochemical properties of amphiphilic agar modified with octenyl succinic anhydride[J]. Carbohydrate Polymers,2021,251:117031. doi: 10.1016/j.carbpol.2020.117031
    [50] ZHANG Y, DAI Y, HOU H, et al. Ultrasound-assisted preparation of octenyl succinic anhydride modified starch and its influence mechanism on the quality[J]. Food Chem X,2020,5:100077. doi: 10.1016/j.fochx.2020.100077
    [51] JI S, XU T, HUANG W, et al. Atmospheric pressure plasma jet pretreatment to facilitate cassava starch modification with octenyl succinic anhydride[J]. Food Chem,2022,370:130922. doi: 10.1016/j.foodchem.2021.130922
    [52] SILVA E K, ANTHERO A, EMERICK L B, et al. Low-frequency ultrasound-assisted esterification of Bixa orellana L. seed starch with octenyl succinic anhydride[J]. Int J Biol Macromol,2022,207:1−8. doi: 10.1016/j.ijbiomac.2022.02.090
    [53] LIU X, DING S, WU J, et al. Molecular structures of octenyl succinic anhydride modified starches in relation to their ability to stabilize high internal phase emulsions and oleogels[J]. Food Hydrocolloids,2021,120:106953. doi: 10.1016/j.foodhyd.2021.106953
    [54] PUNIA S, SANDHU K S, DHULL S B, et al. Dynamic, shear and pasting behaviour of native and octenyl succinic anhydride (OSA) modified wheat starch and their utilization in preparation of edible films[J]. International Journal of Biological Macromolecules,2019,133:110−116. doi: 10.1016/j.ijbiomac.2019.04.089
    [55] SWEEDMAN M C, TIZZOTTI M J, SCHÄFER C, et al. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review[J]. Carbohydrate Polymers,2013,92(1):905−920. doi: 10.1016/j.carbpol.2012.09.040
    [56] XIAO Q, WENG H, CHEN G, et al. Preparation and characterization of octenyl succinic anhydride modified agarose derivative[J]. Food Chem,2019,279:30−39. doi: 10.1016/j.foodchem.2018.11.133
    [57] GAHRUIE H H, ESKANDARI M H, KHALESI M, et al. Rheological and interfacial properties of basil seed gum modified with octenyl succinic anhydride[J]. Food Hydrocolloids,2020,101:105489. doi: 10.1016/j.foodhyd.2019.105489
    [58] SHOKRI Z, SEIDI F, SAEB M R, et al. Elucidating the impact of enzymatic modifications on the structure, properties, and applications of cellulose, chitosan, starch and their derivatives: A review[J]. Materials Today Chemistry,2022,24:100780. doi: 10.1016/j.mtchem.2022.100780
    [59] ZOU M, CHEN Y, SUN D, et al. Immunomodulatory acidic polysaccharides from Zizyphus jujuba cv. Huizao: Insights into their chemical characteristics and modes of action[J]. Food Chemistry,2018,258:35−42. doi: 10.1016/j.foodchem.2018.03.052
    [60] HU T G, ZOU Y X, LI E N, et al. Effects of enzymatic hydrolysis on the structural, rheological, and functional properties of mulberry leaf polysaccharide[J]. Food Chemistry,2021,355:129608. doi: 10.1016/j.foodchem.2021.129608
    [61] WANG Z, XIE J, SHEN M, et al. Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities[J]. Trends in Food Science & Technology,2018,74:147−157.
    [62] ZHANG R, BELWAL T, LI L, et al. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review[J]. Carbohydr Polym,2020,242:116388. doi: 10.1016/j.carbpol.2020.116388
    [63] SHAO P, FENG J, SUN P, et al. Recent advances in improving stability of food emulsion by plant polysaccharides[J]. Food Res Int,2020,137:109376. doi: 10.1016/j.foodres.2020.109376
    [64] GAVAHIAN M, CHEN Y M, MOUSAVI KHANEGHAH A, et al. In-pack sonication technique for edible emulsions: Understanding the impact of acacia gum and lecithin emulsifiers and ultrasound homogenization on salad dressing emulsions stability[J]. Food Hydrocolloids,2018,83:79−87. doi: 10.1016/j.foodhyd.2018.04.039
    [65] WANG L, DING J, FANG Y, et al. Effect of ultrasonic power on properties of edible composite films based on rice protein hydrolysates and chitosan[J]. Ultrasonics Sonochemistry,2020,65:105049. doi: 10.1016/j.ultsonch.2020.105049
    [66] FENG L, CAO Y, XU D, et al. Molecular weight distribution, rheological property and structural changes of sodium alginate induced by ultrasound[J]. Ultrasonics Sonochemistry,2017,34(Complete):609−615.
    [67] WANG W, FENG Y, CHEN W, et al. Citrus pectin modified by microfluidization and ultrasonication: Improved emulsifying and encapsulation properties[J]. Ultrasonics Sonochemistry,2021,70:105322. doi: 10.1016/j.ultsonch.2020.105322
    [68] HAMDANI A M, WANI I A, GANI A, et al. Effect of gamma irradiation on physicochemical, structural and rheological properties of plant exudate gums[J]. Innovative Food Science & Emerging Technologies,2017,44:74−82.
    [69] KHAN A A, GANI A, MASOODI F A, et al. Structural, thermal, functional, antioxidant & antimicrobial properties of beta-D-glucan extracted from baker's yeast (Saccharomyces cereviseae) effect of gamma-irradiation[J]. Carbohydrate Polymers,2016,140:442−450. doi: 10.1016/j.carbpol.2016.01.003
    [70] HAN J A, LIM S T. Effect of γ-irradiation on pasting and emulsification properties of octenyl succinylated rice starches[J]. Carbohydrate Polymers,2012,90(4):1480−1485. doi: 10.1016/j.carbpol.2012.07.018
    [71] DICKINSON E. Hydrocolloids acting as emulsifying agents-How do they do it?[J]. Food Hydrocolloids,2018,78:2−14. doi: 10.1016/j.foodhyd.2017.01.025
    [72] MCCLEMENTS D J, BAI L, CHUNG C. Recent Advances in the utilization of natural emulsifiers to form and stabilize emulsions[J]. Annu Rev Food Sci Technol,2017,8:205−236. doi: 10.1146/annurev-food-030216-030154
    [73] PRASHER P, SHARMA M, MEHTA M, et al. Current-status and applications of polysaccharides in drug delivery systems[J]. Colloid and Interface Science Communications,2021,42:100418. doi: 10.1016/j.colcom.2021.100418
    [74] USMAN M, ZHANG C, PATIL P J, et al. Potential applications of hydrophobically modified inulin as an active ingredient in functional foods and drugs: A review[J]. Carbohydr Polym,2021,252:117176. doi: 10.1016/j.carbpol.2020.117176
    [75] LIU C M, GUO X J, LIANG R H, et al. Alkylated pectin: Molecular characterization, conformational change and gel property[J]. Food Hydrocolloids,2017,69:341−349. doi: 10.1016/j.foodhyd.2017.03.008
    [76] LI J, HU X, LI X, et al. Effects of acetylation on the emulsifying properties of Artemisia sphaerocephala Krasch polysaccharide[J]. Carbohydrate Polymers,2016,144:531−540. doi: 10.1016/j.carbpol.2016.02.039
    [77] HUANG Z, ZONG M H, LOU W Y. Effect of acetylation modification on the emulsifying and antioxidant properties of polysaccharide from Millettia speciosa Champ[J]. Food Hydrocolloids,2022,124:107217. doi: 10.1016/j.foodhyd.2021.107217
    [78] LI S, WILLOUGHBY J A, ROJAS O J. Oil-in-water emulsions stabilized by carboxymethylated lignins: Properties and energy prospects[J]. Chem Sus Chem,2016,9(17):2460−2469. doi: 10.1002/cssc.201600704
    [79] LIN Q, LIANG R, ZHONG F, et al. Effect of degree of octenyl succinic anhydride (OSA) substitution on the digestion of emulsions and the bioaccessibility of β-carotene in OSA-modified-starch-stabilized-emulsions[J]. Food Hydrocolloids,2018,84:303−312. doi: 10.1016/j.foodhyd.2018.05.056
    [80] LI J, LI Y, ZHONG J, et al. Effect of cellulose nanocrystals on the formation and stability of oil-in-water emulsion formed by octenyl succinic anhydride starch[J]. LWT,2021,151:112214. doi: 10.1016/j.lwt.2021.112214
    [81] PAN Y, WU Z, ZHANG B, et al. Preparation and characterization of emulsion stabilized by octenyl succinic anhydride-modified dextrin for improving storage stability and curcumin encapsulation[J]. Food Chem,2019,294:326−332. doi: 10.1016/j.foodchem.2019.05.053
    [82] GAO W, LIU P, WANG B, et al. Synthesis, physicochemical and emulsifying properties of C-3 octenyl succinic anhydride-modified corn starch[J]. Food Hydrocolloids,2021,120:106961. doi: 10.1016/j.foodhyd.2021.106961
    [83] LI J, HU X, YAN X, et al. Effects of hydrolysis by xylanase on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide[J]. Food Hydrocolloids,2018,76:158−163. doi: 10.1016/j.foodhyd.2016.12.015
    [84] CHEN H M, FU X, LUO Z G. Effect of molecular structure on emulsifying properties of sugar beet pulp pectin[J]. Food Hydrocolloids,2016,54:99−106. doi: 10.1016/j.foodhyd.2015.09.021
    [85] SHI F, TIAN X, MCCLEMENTS D J, et al. Influence of molecular weight of an anionic marine polysaccharide (Sulfated fucan) on the stability and digestibility of multilayer emulsions: Establishment of structure-function relationships[J]. Food Hydrocolloids,2021,113:106418. doi: 10.1016/j.foodhyd.2020.106418
    [86] ZHANG L, XIONG T, WANG X F, et al. Pickering emulsifiers based on enzymatically modified quinoa starches: Preparation, microstructures, hydrophilic property and emulsifying property[J]. International Journal of Biological Macromolecules,2021,190:130−140. doi: 10.1016/j.ijbiomac.2021.08.212
    [87] AI C, MENG H, LIN J, et al. Emulsification properties of alkaline soluble polysaccharide from sugar beet pulp: Effect of acetylation and methoxylation[J]. Food Hydrocolloids,2022,124:107361. doi: 10.1016/j.foodhyd.2021.107361
    [88] WANI T A, SHAH A G, WANI S M, et al. Suitability of different food grade materials for the encapsulation of some functional foods well reported for their advantages and susceptibility[J]. C R C Critical Reviews in Food Technology,2016,56(15):2431−2454. doi: 10.1080/10408398.2013.845814
    [89] FENG H, CHAO L, TAN C P, et al. Physicochemical properties and in vitro bioaccessibility of lutein loaded emulsions stabilized by corn fiber gums[J]. RSC Advances,2017,7:38243−38250. doi: 10.1039/C7RA04943A
    [90] LEE L W, LIU X, WONG W, et al. Effects of sucrose monopalmitate (P90), Tween 80 and modified starch on coffee aroma retention and release in coffee oil-based emulsions[J]. Food Hydrocolloids,2017,66(MAY):128−135.
    [91] PAN Y, WU Z, ZHANG B, et al. Preparation and characterization of emulsion stabilized by octenyl succinic anhydride-modified dextrin for improving storage stability and curcumin encapsulation[J]. Food Chemistry,2019,294(OCT.1):326−332.
    [92] ESPINAL-RUIZ M, RESTREPO-SANCHEZ L P, NARVAEZ-CUENCA C E, et al. Impact of pectin properties on lipid digestion under simulated gastrointestinal conditions: Comparison of citrus and banana passion fruit (Passiflora tripartita var. mollissima) pectins[J]. Food Hydrocolloids,2016,52(JAN):329−342.
    [93] SARKAR A, LI H, CRAY D, et al. Composite whey protein–cellulose nanocrystals at oil-water interface: Towards delaying lipid digestion[J]. Food Hydrocolloids,2018,77:436−444. doi: 10.1016/j.foodhyd.2017.10.020
    [94] QIN D, YANG X, GAO S, et al. Influence of hydrocolloids (dietary fibers) on lipid digestion of protein-stabilized emulsions: Comparison of neutral, anionic, and cationic polysaccharides[J]. Journal of Food Science,2016,81(7):C1636−C45. doi: 10.1111/1750-3841.13361
    [95] 孙瑞. 用于固定脂质微纳米载体的水凝胶珠的制备与评价[D]. 南京: 东南大学, 2021

    SUN R. Preparation and evaluation of hydrogel beads for immobilization of lipid micro/nano carriers[D]. Nanjing: Southeast University, 2021.
    [96] BAI L, LÜ S, XIANG W, et al. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion[J]. Food Hydrocolloids,2019,96:709−716. doi: 10.1016/j.foodhyd.2019.04.039
    [97] INFANTES-GARCIA M R, VERKEMPINCK S H E, DEL CASTILLO-SANTAELLA T, et al. In vitro gastric lipid digestion of emulsions with mixed emulsifiers: Correlation between lipolysis kinetics and interfacial characteristics[J]. Food Hydrocolloids,2022,128:107576. doi: 10.1016/j.foodhyd.2022.107576
    [98] TAN Y, ZHANG Z, MURIEL MUNDO J, et al. Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Emulsifier type[J]. Food Research International,2020,137:109739. doi: 10.1016/j.foodres.2020.109739
  • 加载中
图(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回