留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高清X射线荧光光谱法快速测定干制黑木耳中镉和砷的含量

王一凡 于铭心 裴龙英 赵立艳

王一凡,于铭心,裴龙英,等. 高清X射线荧光光谱法快速测定干制黑木耳中镉和砷的含量[J]. 食品工业科技,2023,44(9):333−339. doi: 10.13386/j.issn1002-0306.2022060260
引用本文: 王一凡,于铭心,裴龙英,等. 高清X射线荧光光谱法快速测定干制黑木耳中镉和砷的含量[J]. 食品工业科技,2023,44(9):333−339. doi: 10.13386/j.issn1002-0306.2022060260
WANG Yifan, YU Mingxin, PEI Longying, et al. Rapid Detection of Cadmium and Arsenic in Dried Auricularia auricula by High Definition X-ray Fluorescence Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(9): 333−339. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060260
Citation: WANG Yifan, YU Mingxin, PEI Longying, et al. Rapid Detection of Cadmium and Arsenic in Dried Auricularia auricula by High Definition X-ray Fluorescence Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(9): 333−339. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060260

高清X射线荧光光谱法快速测定干制黑木耳中镉和砷的含量

doi: 10.13386/j.issn1002-0306.2022060260
基金项目: 国家重点研发计划(2019YFC1605400);六合乡村振兴产业发展项目。
详细信息
    作者简介:

    王一凡(1997−),女,博士研究生,研究方向:食品营养与安全,E-mail:wangyftt@163.com

    通讯作者:

    赵立艳(1977−),女,博士,教授,研究方向:食品营养与安全,E-mail:zhlychen@njau.edu.cn

  • 中图分类号: TS207.3

Rapid Detection of Cadmium and Arsenic in Dried Auricularia auricula by High Definition X-ray Fluorescence Spectrometry

  • 摘要: 高清X射线荧光(high definition X-ray fluorescence,HDXRF)光谱技术应用于干制黑木耳样品中镉和砷元素的快速检测。将干制黑木耳样品进行前处理,对样品颗粒粒径、样品量和检测时间等因素进行优化,并评价方法的精密度、重复性和稳定性等。结果表明,最优检测条件为:颗粒粒径100目,样品量0.80 g,检测时间600 s。HDXRF法分析样品的总时间不超过15 min。HDXRF法得到的Cd和As的检出限分别为:0.035和0.012 mg/kg。HDXRF法精密度、重复性和稳定性的相对标准偏差(relative standard deviation, RSD)均低于10%。最后对HDXRF法和电感耦合等离子体质谱(inductively coupled plasma mass spectrometry, ICP-MS)法的检测结果进行比较,其结果的相对误差值均小于20%。说明HDXRF法能够满足干制黑木耳中镉和砷快速检测的要求。

     

  • 图  颗粒粒径对HDXRF法检测计数率(a)和元素含量RSD值(b)的影响

    注:不同字母表示差异性显著(P<0.05),图2图3

    Figure  1.  Effects of particle size on detection counting rates (a) and RSD values of element content (b) by HDXRF

    图  检测时间对HDXRF法检测计数率(a)和元素含量RSD值(b)的影响

    Figure  2.  Effects of measurement time on detection counting rates (a) and RSD values of element content (b) by HDXRF

    图  样品量对HDXRF法检测计数率(a)和元素含量RSD值(b)的影响

    Figure  3.  Effects of sample weight on detection counting rates (a) and RSD values of element content (b) by HDXRF

    表  1  正交试验因素水平表

    Table  1.   Factors and levels of the orthogonal experiment

    水平因素
    A 颗粒粒径(目)B 样品量(g)C 检测时间(s)
    1800.7300
    21000.8600
    31200.9900
    下载: 导出CSV

    表  2  HDXRF法检测计数率的L9 (34)正交试验设计

    Table  2.   L9 (34) orthogonal test for detection counting rates by HDXRF

    试验号A B C 计数率(cps)
    CdAs
    1111602302
    21221770789
    31331530692
    42122075793
    52232072642
    6231667421
    73131937635
    8321796399
    93322028702
    CdK1390246142065
    K2481446385873
    K3476142255539
    R3041381269
    AsK1178317301122
    K2185618302284
    K3173618151969
    R4033387
    优化组合及影响大小CdC2>A2>B2
    AsC2>A2>B2
    下载: 导出CSV

    表  3  HDXRF法的检出限和定量限测试结果

    Table  3.   The results of LOD and LOQ of HDXRF

    元素线性范围(mg/kg)线性方程相关系数检出限(mg/kg)定量限(mg/kg)
    Cd0.12~0.5Y=1.2030x−0.01820.99670.0350.117
    As0.04~0.6Y=0.8462x+0.01440.99710.0120.041
    下载: 导出CSV

    表  4  HDXRF法的精密度、重复性和稳定性测试结果

    Table  4.   Precision, repeatability and stability evaluation of HDXRF

    元素CdAs
    精密度(%)6.343.42
    重复性(%)4.296.29
    稳定性(%)7.485.31
    下载: 导出CSV

    表  5  ICP-MS法与HDXRF法测试结果比较

    Table  5.   Comparison of test results between ICP-MS and HDXRF

    样品序号检测方法元素含量(mg/kg)
    CdAs
    1ICP-MS0.2170.242
    HDXRF0.190.28
    相对误差(%)−12.415.7
    2ICP-MS0.2120.069
    HDXRF0.170.08
    相对误差(%)−18.913.0
    3ICP-MS0.3360.310
    HDXRF0.390.29
    相对误差(%)15.2−6.5
    4ICP-MS0.1840.182
    HDXRF0.210.16
    相对误差(%)12.5−12.1
    5ICP-MS0.1900.587
    HDXRF0.200.51
    相对误差(%)6.3−13.5
    6ICP-MS0.1520.159
    HDXRF0.170.14
    相对误差(%)10.5−10.7
    下载: 导出CSV
  • [1] 和丽忠, 杜丽娟, 严红梅, 等. 微波消解-电感耦合等离子体-质谱法测定黑木耳中铅、镉、砷、铜、锌和铬[J]. 光谱实验室,2012,29(1):435−438. [HE L Z, DU L J, YAN H M, et al. Determination of lead, cadmium, arsenic, copper, zinc and chromium in black fungus by microwave digestion-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Spectroscopy Laboratory,2012,29(1):435−438. doi: 10.3969/j.issn.1004-8138.2012.01.107
    [2] ZHANG T T, ZHAO W Y, XIE B Z, et al. Effects of Auricularia auricula and its polysaccharide on diet-induced hyperlipidemia rats by modulating gut microbiota[J]. Journal of Functional Foods,2020,72:104038. doi: 10.1016/j.jff.2020.104038
    [3] 王翠菊, 刘贵波, 孙成, 等. 木耳多糖影响家兔动脉粥样硬化斑块中基质金属蛋白酶-13表达的研究[J]. 中国药物与临床,2007(5):355−357, 401. [WANG C J, LIU G B, SUN C, et al. Effects of Auricularia auricula polysaccharide on the expression of MMP-13 in rabbit arteriosclerosis plaque[J]. Chinese Remedies & Clinics,2007(5):355−357, 401. doi: 10.3969/j.issn.1671-2560.2007.05.010
    [4] 刘丹丹, 朱志学, 马健, 等. 地木耳多糖的抗氧化活性与抗菌活性研究[J]. 食品安全质量检测学报,2019,10(4):921−926. [LIU D D, ZHU Z X, MA J, et al. Research on the antioxidant and antibacterial activity of polysaccharides from Nostoc commune[J]. Journal of Food Safety & Quality,2019,10(4):921−926. doi: 10.3969/j.issn.2095-0381.2019.04.017
    [5] LIU B R, HUANG Q, CAI H J, et al. Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China[J]. Food Chemistry,2015,188:294−300. doi: 10.1016/j.foodchem.2015.05.010
    [6] 李欣芝. 原子吸收光谱法在食品重金属检测中的应用[J]. 食品安全导刊,2022(7):170−172. [LI X Z. Application of atomic absorption spectrometry in the detection of heavy metals in food[J]. China Food Safety Magazine,2022(7):170−172. doi: 10.3969/j.issn.1674-0270.2022.7.spaqdk202207055
    [7] 李秀林, 田先娇, 田孟华, 等. 电感耦合等离子体原子发射光谱(ICP-AES)法测定胡蜂酒中无机元素[J]. 中国无机分析化学,2022,12(1):155−162. [LI X L, TIAN X J, TIAN M H, et al. Determination of inorganic elements in Vespa Wine by inductively coupled plasma atomic emission spectrometry (ICP-AES)[J]. Chinese Journal of Inorganic Analytical Chemistry,2022,12(1):155−162. doi: 10.3969/j.issn.2095-1035.2022.01.025
    [8] SOBHANARDAKANI S. Potential health risk assessment of heavy metals via consumption of caviar of Persian sturgeon[J]. Marine Pollution Bulletin,2017,123:34−38. doi: 10.1016/j.marpolbul.2017.09.033
    [9] 刘淑萍, 乔继浩. 微波消解-电感耦合等离子体质谱法测量小麦粉中铅、镉、砷和铬[J]. 中国无机分析化学,2022,12(3):17−23. [LIU S P, QIAO J H. Determination of lead, cadmium, arsenic and chromium in wheat flour by inductively coupled plasma mass spectrometry with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry,2022,12(3):17−23. doi: 10.3969/j.issn.2095-1035.2022.03.004
    [10] KATO LS, FERNANDES EAD, RAAB A. Arsenic and cadmium contents in Brazilian rice from different origins can vary more than two orders of magnitude[J]. Food Chemistry,2019,286:644−650. doi: 10.1016/j.foodchem.2019.02.043
    [11] 李茂刚, 梁晶, 闫春华, 等. 基于激光诱导击穿光谱技术结合随机森林算法快速定量分析土壤中重金属元素[J]. 分析化学,2021,49(8):1410−1418. [LI M G, LIANG J, YAN C H, et al. Rapid quantitative analysis of heavy metal elements in soil based on laser-induced breakdown spectroscopy combined with random forest algorithm[J]. Chinese Journal of Analytical Chemistry,2021,49(8):1410−1418. doi: 10.19756/j.issn.0253-3820.211067
    [12] ANDREY D, DUFRIER JP, PERRING L. Analytical capabilities of energy dispersive X-ray fluorescence for the direct quantification of iron in cocoa powder and powdered cocoa drink[J]. Spectrochimica Acta Part B-Atomic Spectroscopy,2018,148:137−142. doi: 10.1016/j.sab.2018.06.014
    [13] MARGUI E, QUERALT I, ANDREY D, et al. Analytical potential of total reflection X-ray fluorescence (TXRF) instrumentation for simple determination of major and trace elements in milk powder samples[J]. Food Chemistry,2022,383:132590. doi: 10.1016/j.foodchem.2022.132590
    [14] HABIB-UR-REHMAN, REHANA I, YAWAR W. Determination of inorganic elements in milk powder using wavelength dispersive X-ray fluorescence spectrometer[J]. International Journal of Dairy Technology,2012,65:98−103. doi: 10.1111/j.1471-0307.2011.00730.x
    [15] 许艳霞, 倪小英, 陈志军, 等. X射线荧光光谱法测定稻米镉含量的影响因素[J]. 粮食与饲料工业,2017(6):60−64. [XU Y X, NI X Y, CHEN Z J, et al. Affecting factors of determination of cadmium content in rice by X-ray fluorescence spectrometry[J]. Cereal & Feed Industry,2017(6):60−64. doi: 10.7633/j.issn.1003-6202.2017.06.016
    [16] PASHKOVA G V, SMAGUNOVA A N, FINKELSHTEIN A L. X-ray fluorescence analysis of milk and dairy products: A review[J]. Trac-Trends in Analytical Chemistry,2018,106:183−189. doi: 10.1016/j.trac.2018.06.014
    [17] DALY K, FENELON A. A rapid and multi-element method for the analysis of major nutrients in grass (Lolium perenne) using energy-dispersive X-ray fluorescence spectroscopy[J]. Irish Journal of Agricultural and Food Research,2017,56:1−11. doi: 10.1515/ijafr-2017-0001
    [18] 彭洪柳, 杨周生, 赵婕, 等. 高精度便携式X射线荧光光谱仪在污染农田土壤重金属速测中的应用研究[J]. 农业环境科学学报,2018,37(7):1386−1395. [PENG H L, YANG Z S, ZHAO J, et al. Use of high-precision portable X-ray fluorescence spectrometer on the heavy metal rapid determination for contaminated agricultural soils[J]. Journal of Agro-Environment Science,2018,37(7):1386−1395. doi: 10.11654/jaes.2018-0568
    [19] DOS SANTOS F R, DE OLIVEIRA J F, BARBOSA G M C, et al. Comparison between energy dispersive X-ray fluorescence spectral data and elemental data for soil attributes modelling[J]. Spectrochimica Acta Part B-Atomic Spectroscopy,2021,185:106303. doi: 10.1016/j.sab.2021.106303
    [20] 陈宣, 王丽香, 承书振, 等. 高精度便携式X射线荧光光谱仪对污水厂剩余污泥重金属的快速测定[J]. 净水技术,2019,38(12):17−21, 35. [CHEN X, WANG L X, CHENG S Z, et al. Rapid determination of heavy metals in excess sludge of wwtp with high-precision portable X-ray fluorescence spectrometer[J]. Water Purification Technology,2019,38(12):17−21, 35. doi: 10.15890/j.cnki.jsjs.2019.12.004
    [21] THOMPSON M, ELLISON S L R, WOOD R. Harmonized guidelines for single-laboratory validation of methods of analysis-(IUPAC Technical Report)[J]. Pure and Applied Chemistry,2002,74:835−855. doi: 10.1351/pac200274050835
    [22] 马江媛, 桑晓霞, 李叶丽, 等. 基于能量色散X射线荧光光谱分析技术对茶叶检测条件的优化[J]. 食品与发酵工业,2020,46(4):282−286. [MA J Y, SANG X X, LI Y L, et al. Optimization of tea detection conditions based on EDXRF technology[J]. Food and Fermentation Industries,2020,46(4):282−286. doi: 10.13995/j.cnki.11-1802/ts.021738
    [23] 桑晓霞, 马江媛, 温丹华, 等. 基于能量色散X射线荧光光谱技术检测大米中镉的研究[J]. 食品工业科技,2020,41(8):268−272. [SANG X X, MA J Y, WEN D H, et al. Detection of Cd in rice based on energy dispersive X-ray fluorescence spectrometry[J]. Science and Technology of Food Industry,2020,41(8):268−272. doi: 10.13386/j.issn1002-0306.2020.08.042
    [24] 刘国庆. 微波消解-ICP-MS法测定红菇中的微量元素[J]. 食品研究与开发,2016,37(17):130−133. [LIU G Q. Determination of trace elements in Russula by microwave digestion-ICP-MS[J]. Food Research and Development,2016,37(17):130−133. doi: 10.3969/j.issn.1005-6521.2016.17.032
    [25] BENDICHO C, DELOOSVOLLEBREGT M T C. Solid sampling in electrothermal atomic-absorption spectrometry using commercial atomizers-a review[J]. Journal of Analytical Atomic Spectrometry,1991,6:353−374. doi: 10.1039/ja9910600353
    [26] 王纪华, 刘晓丽, 高龙, 等. X射线荧光光谱法测定镍电解液中的镍、氯、硫酸根[J]. 冶金分析,2012,32(12):29−33. [WANG J H, LIU X L, GAO L, et al. Determination of nickel, chlorine and sulfate in nickel electrolyte by X-ray fluorescence spectrometry[J]. Metallurgical Analysis,2012,32(12):29−33. doi: 10.3969/j.issn.1000-7571.2012.12.005
    [27] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 2762-2017食品安全国家标准 食品中污染物限量[S]. 北京: 中国标准出版社.

    National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. GB 2762-2017 National food safety standard Limits of contaminants in food[S]. Beijing: Standards Press of China.
    [28] 周衡刚, 王伟, 陈雯, 等. 粉末压片-能量色散X射线荧光光谱法测定鱼粉中铬、镉、砷、汞、铅含量[J]. 饲料研究,2021,44(14):123−126. [ZHOU H G, WANG W, CHEN W, et al. Determination of chromium, cadmium, arsenic, mercury and lead in fish meals by energy dispersive X-Ray fluorescence spectrometry with powder pelleting preparation using suspension sampling[J]. Feed Research,2021,44(14):123−126. doi: 10.13557/j.cnki.issn1002-2813.2021.14.028
    [29] 廖学亮, 沈学静, 刘明博, 等. 台式能量色散X射线荧光光谱直接检测大米中的Cd[J]. 食品科学,2014,35(24):169−173. [LIAO X L, SHEN X J, LIU M B, et al. Direct determination of cadmium in rice by bench-top energy dispersive X-ray fluorescence spectrometer[J]. Food Science,2014,35(24):169−173. doi: 10.7506/spkx1002-6630-201424032
    [30] 杨立红, 阮新, 曹莹莹, 等. 电感耦合等离子体质谱法测定20种食用菌无机元素含量[J]. 营养学报,2013,35(4):411−413. [YANG L H, RUAN X, CAO Y Y, et al. Determination of inorganic elements in 20 edible mushrooms by inductively coupled plasma mass spectrometry[J]. Acta Nutrimenta Sinica,2013,35(4):411−413. doi: 10.13325/j.cnki.acta.nutr.sin.2013.04.002
    [31] 王英, 张银, 张薇, 等. ICP-MS法同时测定云南野生牛肝菌中5种金属元素[J]. 食品工业,2018,39(9):301−304. [WANG Y, ZHANG Y, ZHANG W, et al. Simultaneous detection of five elements of wild edible Boletus in Yunnan Province by ICP-MS[J]. The Food Industry,2018,39(9):301−304.
    [32] YIN L L, SHI G Q, TIAN Q, et al. Determination of the metals by ICP-MS in wild mushrooms from Yunnan, China[J]. Journal of Food Science,2012,77:T151−T155. doi: 10.1111/j.1750-3841.2012.02810.x
    [33] AVILA D V L, SOUZA S O, COSTA S S L, et al. Determination of Zn in dry feeds for cats and dogs by energy-dispersive X-Ray fluorescence spectrometry[J]. Journal of Aoac International,2016,99:1572−1575.
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  24
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回