留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温敏型胶体对玉米淀粉3D打印固化性能的影响

张文海

张文海. 温敏型胶体对玉米淀粉3D打印固化性能的影响[J]. 食品工业科技,2023,44(9):45−52. doi: 10.13386/j.issn1002-0306.2022060282
引用本文: 张文海. 温敏型胶体对玉米淀粉3D打印固化性能的影响[J]. 食品工业科技,2023,44(9):45−52. doi: 10.13386/j.issn1002-0306.2022060282
ZHANG Wenhai. Effect of Temperature Sensitive Colloid on 3D Printing and Curing Properties of Corn Starch[J]. Science and Technology of Food Industry, 2023, 44(9): 45−52. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060282
Citation: ZHANG Wenhai. Effect of Temperature Sensitive Colloid on 3D Printing and Curing Properties of Corn Starch[J]. Science and Technology of Food Industry, 2023, 44(9): 45−52. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060282

温敏型胶体对玉米淀粉3D打印固化性能的影响

doi: 10.13386/j.issn1002-0306.2022060282
基金项目: 厦门市重大科技计划项目(3502Z20201032)。
详细信息
    作者简介:

    张文海(1987−),男,硕士,高级工程师,研究方向:食品科学,E-mail:814595559@qq.com

  • 中图分类号: TS201.7

Effect of Temperature Sensitive Colloid on 3D Printing and Curing Properties of Corn Starch

  • 摘要: 目的:利用温敏型胶体的相转变特性,辅助实现淀粉在打印过程中的成型固化,并揭示不同种类胶体-淀粉体系的固化性能变化规律。方法:将不同比例的温敏型胶体(低酰基结冷胶、明胶、κ-卡拉胶)与玉米淀粉进行复配并测定其流变性能,通过打印圆柱及空心球模型、测试产品力-位移曲线、温度扫描流变、全质构分析及微观结构观测评估体系可打印及固化性能。结果:结冷胶和卡拉胶在2%~4%添加量,明胶在0%~2%添加量时,体系具有适宜的流变性能及良好的可打印性能。添加4%结冷胶及4%卡拉胶的产品表现出显著的塑性,固化效果较好;添加明胶的打印产品无显著塑性,打印产品不固化。结冷胶-淀粉混合体系的固化温度在35~43 ℃之间;卡拉胶-淀粉混合体系的固化温度在30~40 ℃之间,随着胶体含量增加,固化温度上升,固化速度加快。而随着明胶含量增加,固化温度从25 ℃下降至20 ℃以下且固化速度减慢。4%低酰基结冷胶产品具有更致密的凝胶网络,硬度高于4% κ-卡拉胶产品。明胶对硬度、弹性都有削弱作用,但使粘附力大幅提高。结论:适宜含量的低酰基结冷胶和κ-卡拉胶能够实现淀粉的成型固化,且卡拉胶固化性能优于结冷胶,而明胶则无辅助固化能力。

     

  • 图  低酰基结冷胶(A)、κ-卡拉胶(B)和明胶(C)复配体系的粘度随剪切速率的变化

    Figure  1.  The viscosity of low acyl gellan gum (A), κ-carrageenan (B) and gelatin (C) varied with shear rate

    图  低酰基结冷胶(A)、κ-卡拉胶(B)和明胶(C)复配体系的储能模量(G′)随角频度的变化

    Figure  2.  The storage modulus (G') of low acyl gellan gum (A), κ-carrageenan (B) and gelatin (C) varied with angular frequency

    图  低酰基结冷胶(A)、κ-卡拉胶(B)和明胶(C)复配体系的损耗角正切(tan δ)随角频度的变化

    Figure  3.  The loss tangent (tan δ) of low acyl gellan gum (A), κ-carrageenan (B) and gelatin (C) varied with angular frequency

    图  不同浓度温敏型胶体与淀粉复配体系的3D打印圆柱产品

    Figure  4.  3D printing of cylinder products with different concentrations of temperature sensitive colloid and starch

    图  不同温敏型胶体添加量复配体系3D打印圆柱产品的高度

    注:不同字母代表有显著性差异(P<0.05)。

    Figure  5.  Height of 3D printing cylinder products with different temperature sensitive colloid addition system

    图  低酰基结冷胶、κ-卡拉胶(A)和明胶(B)复配体系3D打印圆柱模型的力-位移曲线

    Figure  6.  Force-displacement curve of 3D printed cylindrical model of low acyl gellan gum, κ-carrageenan (A) and gelatin (B) compound system

    图  不同低酰基结冷胶添加量复配体系(0%~4%)3D打印空心球整体图、剖面图及局部图

    Figure  7.  3D printed hollow ball, section and local drawing of compound system with different low acyl gellan gum addition (0%~4%)

    图  不同κ-卡拉胶添加量复配体系(0%~4%)3D打印空心球整体图、剖面图及局部图

    Figure  8.  3D printed hollow ball, section and local drawing of compound system with different κ-carrageenan addition (0%~4%)

    图  不同明胶添加量复配体系(0%~10%)3D打印空心球整体图、剖面图及局部图

    Figure  9.  3D printing of hollow spheres, sections and local drawing with different gelatin addition (0%~10%)

    图  10  低酰基结冷胶(A)、κ-卡拉胶(B)和明胶(C)复配体系的储能模量(G′)随温度变化图

    Figure  10.  The storage modulus (G') of low acyl gellan gum (A), κ-carrageenan (B) and gelatin (C) varied with temperature

    图  11  不同温敏型胶体添加量复配体系的微观结构

    Figure  11.  Microstructure of composite system with different temperature sensitive colloid addition system

    表  1  3D打印模型打印参数

    Table  1.   The print parameter for 3D printing models

    模型尺寸
    (mm)
    打印速度(mm/s)每层厚度(mm)填充密度(%)外壳厚度(mm)
    圆柱高度,25
    半径,15
    401801
    空心圆柱高度,25
    外径,15
    内径,10
    40106
    空心球高度,28
    外径,15
    内径,10
    40106
    下载: 导出CSV

    表  2  不同温敏型胶体添加量复配体系产品质构特性的变化

    Table  2.   Changes of texture characteristics of products with different amount of temperature sensitive colloid

    胶添加量硬度(g)粘附力(g/s)弹性内聚性回复性
    0%128.99±10.85d0.66±0.70f1.70±0.07a0.99±0.01a0.84±0.03a
    2%低酰
    基结冷胶
    844.10±145.27c12.47±0.56e1.32±0.28bc0.90±0.04ab0.73±0.05b
    4%低酰
    基结冷胶
    4588.72±969.17a0.44±0.26f0.92±0.04d0.85±0.04b0.61±0.05c
    2% κ-卡
    拉胶
    981.43±224.75c3.98±2.84ef1.58±0.24ab0.97±0.01a0.79±0.03ab
    4% κ-卡
    拉胶
    2058.69±418.73b0.16±0.06f1.44±0.43ab0.95±0.03ab0.78±0.05ab
    2%明胶148.69±16.94d25.05±3.87d1.05±0.15cd0.96±0.02ab0.81±0.04a
    4%明胶74.27±3.65e54.94±9.91c0.88±0.03d0.72±0.06c0.41±0.04d
    6%明胶15.65±0.29f87.03±2.59b0.75±0.00d0.51±0.07d0.24±0.02e
    8%明胶15.76±0.49f99.01±5.15a0.71±0.03d0.48±0.10d0.18±0.03e
    10%明胶12.41±0.19g86.89±20.23b0.72±0.04d0.57±0.13d0.18±0.06e
    注:同列不同小写字母表示存在显著差异(P<0.05)。
    下载: 导出CSV
  • [1] 赵子龙. 微波3D打印固化单元设计及打印鱼糜制品品质研究[D]. 无锡: 江南大学, 2021

    ZHAO Z L. Design of microwave 3D printing curing unit and study on the quality of printed surimi products[D]. Wuxi: Jiangnan University, 2021.
    [2] DANKAR I, HADDARAH A, OMAR F E L, et al. 3D Printing technology: The new era for food customization and elaboration[J]. Trends in Food Science & Technology,2018,75:231−242.
    [3] CHEN Y Y, ZHANG M, SUN Y N, et al. Improving 3D/4D printing characteristics of natural food gels by novel additives: A review[J]. Food Hydrocolloids,2022,123:107160. doi: 10.1016/j.foodhyd.2021.107160
    [4] ZHAO Z L, WANG Q, YAN B W, et al. Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing[J]. Innovative Food Science and Emerging Technologies,2021,67:102546. doi: 10.1016/j.ifset.2020.102546
    [5] MANTIHAL S, PRAKASH S, BHANDARI B. Textural modification of 3D printed dark chocolate by varying internal infill structure[J]. Food Research International,2019,121:648−657. doi: 10.1016/j.foodres.2018.12.034
    [6] HYUNJUNG K, YAXIN W, JIHO C, et al. Meat analog production through artificial muscle fiber insertion using coaxial nozzle-assisted three-dimensional food printing[J]. Food Hydrocolloids,2021,120:106898. doi: 10.1016/j.foodhyd.2021.106898
    [7] CHEN H, XIE F W, CHEN L, et al. Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors[J]. Journal of Food Engineering,2019,244:150−158. doi: 10.1016/j.jfoodeng.2018.09.011
    [8] ZHENG L Y, LIU J B, LIU R, et al. 3D Printing performance of gels from wheat starch, flour and whole meal[J]. Food Chemistry,2021,365:15.
    [9] CUI Y, LI C Y, GUO Y, et al. Rheological & 3D printing properties of potato starch composite gels[J]. Journal of Food Engineering,2022,313:110756. doi: 10.1016/j.jfoodeng.2021.110756
    [10] ZENG X X, CHEN H, CHEN L, et al. Insights into the relationship between structure and rheological properties of starch gels in hot-extrusion 3D printing[J]. Food Chemistry,2021,342:128362. doi: 10.1016/j.foodchem.2020.128362
    [11] ZHU S C, WANG W W, STIEGER M, et al. Shear-induced structuring of phase-separated sodium caseinate-sodium alginate blends using extrusion-based 3D printing: Creation of anisotropic aligned micron-size fibrous structures and macroscale filament bundles[J]. Innovative Food Science & Emerging Technologies,2022,81:103146.
    [12] YAN B W, ZHAO Z L, ZHANG N N, et al. 3D Food printing curing technology based on gellan gum[J]. Journal of Food Engineering,2022,327:111036. doi: 10.1016/j.jfoodeng.2022.111036
    [13] LIU Z P, CHEN H, ZHENG B, et al. Understanding the structure and rheological properties of potato starch induced by hot-extrusion 3D printing[J]. Food Hydrocolloids,2020,105:8.
    [14] SHIN S, KWAK H, SHIN D, et al. Solid matrix-assisted printing for three-dimensional structuring of a viscoelastic medium surface[J]. Nature Communications,2019,10:12. doi: 10.1038/s41467-018-07943-y
    [15] MIN H, KENNEDY J F, LI B, et al. Characters of rice starch gel modified by gellan, carrageenan, and glucomannan: A texture profile analysis study[J]. Carbohydrate Polymers,2007,69(3):411−418. doi: 10.1016/j.carbpol.2006.12.025
    [16] KIM N P, EO J S, CHO D. Optimization of piston type extrusion (pte) techniques for 3D printed food[J]. Journal of Food Engineering,2018,235:41−49. doi: 10.1016/j.jfoodeng.2018.04.019
    [17] 彭凯, 吴薇, 龙蕾, 等. 非淀粉成分对淀粉糊化特性的影响[J]. 粮食与饲料工业,2015(5):41−44. [PENG K, WU W, LONG L, et al. Effect of non starch components on pasting properties of starch[J]. Cereal & Feed Industry,2015(5):41−44. doi: 10.7633/j.issn.1003-6202.2015.05.011
    [18] XU L L, GU L P, SU Y J, et al. Impact of thermal treatment on the rheological, microstructural, protein structures and extrusion 3D printing characteristics of egg yolk[J]. Food Hydrocolloids,2020,100:105399. doi: 10.1016/j.foodhyd.2019.105399
    [19] SCHWARTZ J J, BOYDSTON A J. Multimaterial actinic spatial control 3D and 4D printing[J]. Nature Communications,2019,10:10. doi: 10.1038/s41467-018-07709-6
    [20] LAI J C, LI L, WANG D P, et al. A rigid and healable polymer cross-linked by weak but abundant Zn (II)-carboxylate interactions[J]. Nature Communications,2018,9:9. doi: 10.1038/s41467-017-01881-x
    [21] VISSER J, MELCHELS F P W, JEON J E, et al. Reinforcement of hydrogels using three-dimensionally printed microfibres[J]. Nature Communications,2015,6:10.
    [22] THOMPSON Y, GONZALEZ-GUTIERREZ J, KUKLA C, et al. Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316l stainless steel[J]. Additive Manufacturing,2019,30:8.
    [23] WEN K J, LI Y, HUANG W, et al. Mechanical behaviors of hydrogel-impregnated sand[J]. Construction and Building Materials,2019,207:174−180. doi: 10.1016/j.conbuildmat.2019.02.141
    [24] ZALDIVAR R J, MCLOUTH T D, FERRELLI G L, et al. Effect of initial filament moisture content on the microstructure and mechanical performance of ultem (r) 9085 3D printed parts[J]. Additive Manufacturing,2018,24:457−466. doi: 10.1016/j.addma.2018.10.022
    [25] ZHANG J X, MIAO Y G, QIN Q H, et al. Static and dynamic experiments on hydrogels: Effects of the chemical composition of the fluid[J]. Mechanics of Materials,2021,154:8.
    [26] PATTARAPON P, MIN Z AND, SAKAMON D. Investigation on 3D printing ability of soybean protein isolate gels and correlations with their rheological and textural properties via LF-NMR spectroscopic characteristics[J]. LWT-Food Science and Technology,2020,122:109019. doi: 10.1016/j.lwt.2020.109019
    [27] CHEN J W, MU T H, GOFFIN D, et al. Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing[J]. Journal of Food Engineering,2019,261:76−86. doi: 10.1016/j.jfoodeng.2019.03.016
    [28] KANG D H, LOUIS F, LIU H, et al. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting[J]. Nature Communications,2021,12(1):12. doi: 10.1038/s41467-020-20168-2
    [29] WU L F, LIU Z C, GUAN Y P, et al. Visual presentation for monitoring layer-wise curing quality in dlp 3D printing[J]. Rapid Prototyping Journal,2021,27(10):1776−1790. doi: 10.1108/RPJ-03-2020-0056
    [30] BABAEI J, KHODAIYAN F, MOHAMMADIAN M. Effects of enriching with gellan gum on the structural, functional, and degradation properties of egg white heat-induced hydrogels[J]. International Journal of Biological Macromolecules,2019,128:94−100. doi: 10.1016/j.ijbiomac.2019.01.116
    [31] MIYOSHI E, TAKAYA T, NISHINARI K. Rheological and thermal studies of gel-sol transition in gellan gum aqueous solutions[J]. Carbohydrate Polymers,1996,30(2-3):109−119. doi: 10.1016/S0144-8617(96)00093-8
    [32] XU X J, FANG S, LI Y H, et al. Effects of low acyl and high acyl gellan gum on the thermal stability of purple sweet potato anthocyanins in the presence of ascorbic acid[J]. Food Hydrocolloids,2019,86:116−123. doi: 10.1016/j.foodhyd.2018.03.007
    [33] SHINSHO A, BRENNER T, DESCALLAR F B, et al. The thickening properties of native gellan gum are due to freeze drying-induced aggregation[J]. Food Hydrocolloids,2020,109:4.
    [34] JIMENEZ A, FABRA M J, TALENS P, et al. Effect of sodium caseinate on properties and ageing behaviour of corn starch based films[J]. Food Hydrocolloids,2012,29(2):265−271. doi: 10.1016/j.foodhyd.2012.03.014
    [35] WANG K, WANG W H, YE R, et al. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations[J]. Food Chemistry,2017,216:209−216. doi: 10.1016/j.foodchem.2016.08.048
    [36] THUAN-CHEW T, WAN-TECK F, MIN-TZE L, et al. Comparative assessment of textural properties and microstructure of composite gels prepared from gelatine or gellan with maize starch and/or egg white[J]. International Journal of Food Science & Technology,2015,50(3):592−604.
    [37] MAHMOOD K, KAMILAH H, SHANG P L, et al. A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications[J]. Food Bioscience,2017,19:110−120. doi: 10.1016/j.fbio.2017.05.006
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  14
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回