留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗菌水凝胶在食品领域的研究进展

郑雅露 朱圣羽 熊晓辉 薛峰 李晨

郑雅露,朱圣羽,熊晓辉,等. 抗菌水凝胶在食品领域的研究进展[J]. 食品工业科技,2023,44(9):446−454. doi: 10.13386/j.issn1002-0306.2022060287
引用本文: 郑雅露,朱圣羽,熊晓辉,等. 抗菌水凝胶在食品领域的研究进展[J]. 食品工业科技,2023,44(9):446−454. doi: 10.13386/j.issn1002-0306.2022060287
ZHENG Yalu, ZHU Shengyu, XIONG Xiaohui, et al. Research Progress of Antibacterial Hydrogels in the Food Field[J]. Science and Technology of Food Industry, 2023, 44(9): 446−454. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060287
Citation: ZHENG Yalu, ZHU Shengyu, XIONG Xiaohui, et al. Research Progress of Antibacterial Hydrogels in the Food Field[J]. Science and Technology of Food Industry, 2023, 44(9): 446−454. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060287

抗菌水凝胶在食品领域的研究进展

doi: 10.13386/j.issn1002-0306.2022060287
基金项目: 江苏省农业科技自主创新资金项目[CX(21)3110]。
详细信息
    作者简介:

    郑雅露(1998−),女,硕士研究生,研究方向:食品生物技术,E-mail:202161218151@njtech.edu.cn

    通讯作者:

    李晨(1987−),女,博士,副教授,研究方向:食品生物技术,E-mail:lichenfs@njtech.edu.cn

  • 中图分类号: TS201.2

Research Progress of Antibacterial Hydrogels in the Food Field

  • 摘要: 水凝胶是由亲水性三维网络结构组成的一种高分子材料,可以迅速吸水溶胀并保持溶胀状态,避免大量水流失。它能够提供足够的容量来容纳各种材料,包括小分子、聚合物和颗粒等,其中表现出抗菌性能的被称为抗菌水凝胶。抗菌水凝胶已被广泛应用于生物医学、纺织、化工、农业以及组织工程等多个领域。其在食品包装、食品质量指示以及食品保鲜等方面有很大的应用潜力却没有引起人们足够的重视。据活性成分的类型,抗菌水凝胶可分为3类:天然高分子抗菌水凝胶;载有无机/有机抗菌物质的水凝胶;载有光激活或光响应材料的水凝胶。本综述分别阐述了这3类抗菌水凝胶的抗菌机理及其应用现状,以期为抗菌水凝胶在食品领域上发挥抗菌功效的应用提供更广阔的思路。

     

  • 图  水凝胶交联方式示意图

    注:a:物理交联;b:化学交联(红点为共价键)。

    Figure  1.  Schematic diagram of hydrogel crosslinking

    图  天然高分子多糖基抗菌水凝胶的抗菌机理[33]

    Figure  2.  Antibacterial mechanism of natural polymer polysaccharide-based antibacterial hydrogels[33]

    图  无机抗菌剂的抗菌机理[43]

    Figure  3.  Antibacterial mechanisms of inorganic antibacterial agents[43]

    图  有机抗菌剂的抗菌机理[47]

    Figure  4.  Antibacterial mechanisms of organic antibacterial agents[47]

    图  基于PTT(a)和PDT(b)抗菌水凝胶的机理[52-54]

    Figure  5.  Mechanism of antibacterial hydrogels based on PTT (a) and PDT (b)[52-54]

    图  智能食品包装系统在不同食品基质中的潜在应用

    Figure  6.  Potential applications of smart food packaging systems in different food matrices

    表  1  抗菌水凝胶的分类及其优缺点

    Table  1.   Classification, advantages and disadvantages of antibacterial hydrogels

    分类常见材料优点缺点文献
    天然高分子抗菌水凝胶纤维素基、壳聚糖基和淀粉基等生物相容性好、安全无毒耐热性差、抗菌时间短[28]
    载有无机/有机抗菌物质的水凝胶金属离子及其氧化物/季铵盐等无耐药性、广谱抗菌/来源丰富、
    杀菌力强
    成本高、污染环境/有耐药性、
    有毒
    [30]
    载有光激活或光响应材料的抗菌水凝胶金属纳米材料、光敏剂、光热剂等杀菌时间短、效果好需借助外源性抗菌技术[31]
    下载: 导出CSV
  • [1] 刘艺楠. 传统抗菌剂与新型抗菌剂对细菌生长及细菌耐药的影响[D]. 石家庄: 河北科技大学, 2019

    LIU Y N. Effects of traditional antibacterial agents and new antibacterial agents on bacterial growth and bacterial resistance[D]. Shijiazhaung: Hebei University of Science & Technology, 2019.
    [2] MOCAN T, MATEA C T, POP T, et al. Carbon nanotubes as anti-bacterial agents[J]. Cellular and Molecular Life Sciences,2017,74(19):3467−3479. doi: 10.1007/s00018-017-2532-y
    [3] AMIN R M, MAHMOUD R K, GADELHAK Y, et al. Gamma irradiated green synthesized zero valent iron nanoparticles as promising antibacterial agents and heavy metal nano-adsorbents[J]. Environmental Nanotechnology, Monitoring & Management,2021,16:100461.
    [4] ZHANG Z, HAN X. Polymer antibacterial agent immobilized polyethylene films as efficient antibacterial cling films[J]. Materials Science and Engineering:C,2019,105:110088. doi: 10.1016/j.msec.2019.110088
    [5] DEBBABI S, GROLEAU M, LÉTOURNEAU M, et al. Antibacterial properties of the pituitary adenylate cyclase-activating polypeptide: A new human antimicrobial peptide[J]. PLOS ONE,2018,13(11):e207366.
    [6] XIE Y, WANG X, SUN M, et al. Heterochiral peptide-based biocompatible and injectable supramolecular hydrogel with antibacterial activity[J]. Journal of Materials Science,2022,57(8):5198−5209. doi: 10.1007/s10853-022-06982-7
    [7] RIZWAN M, RUBINA GILANI S, IQBAL DURANI A, et al. Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field[J]. Journal of Advanced Research,2021,33:15−40. doi: 10.1016/j.jare.2021.03.007
    [8] DING H, LIANG X, ZHANG X N, et al. Tough supramolecular hydrogels with excellent self-recovery behavior mediated by metal-coordination interaction[J]. Polymer,2019,171:201−210. doi: 10.1016/j.polymer.2019.03.061
    [9] STENSTRÖM P, FAN Y, ZHANG Y, et al. UV-cured antibacterial hydrogels based on PEG and monodisperse heterofunctional Bis-MPA dendrimers[J]. Molecules,2021,26(8):2364. doi: 10.3390/molecules26082364
    [10] LI X, LIU W, LI Y, et al. Mechanically robust enzymatically degradable shape memory polyurethane urea with a rapid recovery response induced by NIR[J]. Journal of Materials Chemistry B,2020,8(23):5117−5130. doi: 10.1039/D0TB00798F
    [11] LI M, ZHANG Z, LIANG Y, et al. Multifunctional tissue-adhesive cryogel wound dressing for rapid nonpressing surface hemorrhage and wound repair[J]. ACS Applied Materials & Interfaces,2020,12(32):35856−35872.
    [12] JAYAKUMAR A, JOSE V K, LEE J M. Hydrogels for medical and environmental applications[J]. Small Methods,2020,4(3):1900735. doi: 10.1002/smtd.201900735
    [13] HAN D, LI Y, LIU X, et al. Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds[J]. Chemical Engineering Journal,2020,396:125194. doi: 10.1016/j.cej.2020.125194
    [14] SHARMA S, TIWARI S. A review on biomacromolecular hydrogel classification and its applications[J]. International Journal of Biological Macromolecules,2020,162:737−747. doi: 10.1016/j.ijbiomac.2020.06.110
    [15] LIU X, HE X, YANG B, et al. Dual physically cross-linked Hydrogels incorporating hydrophobic interactions with promising repairability and ultrahigh elongation[J]. Advanced Functional Materials,2021,31(3):2008187. doi: 10.1002/adfm.202008187
    [16] SHAO C, MENG L, WANG M, et al. Mimicking dynamic adhesiveness and strain-stiffening behavior of biological tissues in tough and self-healable cellulose nanocomposite hydrogels[J]. ACS Applied Materials & Interfaces,2019,11(6):5885−5895.
    [17] YU H C, LI C Y, DU M, et al. Improved toughness and stability of κ-carrageenan/polyacrylamide double-network hydrogels by dual cross-linking of the first network[J]. Macromolecules,2019,52(2):629−638. doi: 10.1021/acs.macromol.8b02269
    [18] LI D, FEI X, WANG K, et al. A novel self-healing triple physical cross-linked hydrogel for antibacterial dressing[J]. Journal of Materials Chemistry B,2021,9(34):6844−6855. doi: 10.1039/D1TB01257F
    [19] WANG W, ZHANG Y, LIU W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions[J]. Progress in Polymer Science,2017,71:1−25. doi: 10.1016/j.progpolymsci.2017.04.001
    [20] ZHANG R, FU Q, ZHOU K, et al. Ultra stretchable, tough and self-healable poly (acrylic acid) hydrogels cross-linked by self-enhanced high-density hydrogen bonds[J]. Polymer,2020,199:122603. doi: 10.1016/j.polymer.2020.122603
    [21] ZHOU H, ZHANG M, CAO J, et al. Highly flexible, tough, and self-healable hydrogels enabled by dual cross-linking of triblock copolymer micelles and ionic interactions[J]. Macromolecular Materials and Engineering,2017,302(2):1600352. doi: 10.1002/mame.201600352
    [22] LI S, WANG X, CHEN J, et al. Calcium ion cross-linked sodium alginate hydrogels containing deferoxamine and copper nanoparticles for diabetic wound healing[J]. Int J Biol Macromol,2022,202:657−670. doi: 10.1016/j.ijbiomac.2022.01.080
    [23] BERMEJO-VELASCO D, AZEMAR A, OOMMEN O P, et al. Modulating thiol pKa promotes disulfide formation at physiological pH: An elegant strategy to design disulfide cross-linked hyaluronic acid hydrogels[J]. Biomacromolecules,2019,20(3):1412−1420. doi: 10.1021/acs.biomac.8b01830
    [24] SONG Y, XU L, XU L, et al. Radiation cross-linked gelatin/sodium alginate/carboxymethylcellulose sodium hydrogel for the application as debridement glue paste[J]. Polym Bull (Berl),2022,79(2):725−742. doi: 10.1007/s00289-020-03525-5
    [25] FU S, ZHOU L, ZENG P, et al. Antibacterial chitosan-gelatin hydrogel beads cross-linked by riboflavin under ultraviolet a irradiation[J]. Fibers and Polymers,2021,23(2):315−320.
    [26] CHANG K, CHEN W, CHEN C, et al. Chemical cross-linking on gelatin-hyaluronan loaded with hinokitiol for the preparation of guided tissue regeneration hydrogel membranes with antibacterial and biocompatible properties[J]. Materials Science and Engineering: C,2021,119:111576. doi: 10.1016/j.msec.2020.111576
    [27] LEE S C, KWON I K, PARK K. Hydrogels for delivery of bioactive agents: A historical perspective[J]. Advanced Drug Delivery Reviews,2013,65(1):17−20. doi: 10.1016/j.addr.2012.07.015
    [28] 许雨芩, 杨建军, 吴庆云, 等. 抗菌型高分子水凝胶研究进展[J]. 化工新型材料,2022,50(9):218−224, 228. [XU Y Q, YANG J J, WU Q Y, et al. Research progress of antibacterial polymer hydrogels[J]. New Chemical Materials,2022,50(9):218−224, 228.
    [29] ZHANG R, YU B, TIAN Y, et al. Diversified antibacterial modification and latest applications of polysaccharide-based hydrogels for wound healthcare[J]. Applied Materials Today,2022,26:101396. doi: 10.1016/j.apmt.2022.101396
    [30] 周春才, 袁跃, 苏小凯. 抗菌水凝胶研究进展[J]. 化学世界,2016,57(1):51−55. [ZOU C C, YUAN Y, SU X K. Progress in synthesis of antibacterial hydrogel[J]. Chemical World,2016,57(1):51−55.
    [31] LIU L, SHI J, SUN X, et al. Thermo-responsive hydrogel-supported antibacterial material with persistent photocatalytic activity for continuous sterilization and wound healing[J]. Composites Part B: Engineering,2022,229:109459. doi: 10.1016/j.compositesb.2021.109459
    [32] 章紫英, 邓利珍, 戴涛涛, 等. 多糖基水凝胶载体及其干燥方式研究进展[J]. 食品工业科技,2021,42(23):438−446. [ZHANG Z Y, DENG L Z, DAI T T, et al. Research progress of polysaccharide-based hydrogel carriers and their drying method[J]. Science and Technology of Food Industry,2021,42(23):438−446.
    [33] 何天盈, 殷娴, 孙博, 等. 抑菌型表面活性剂抑菌机理及应用[J]. 日用化学工业,2018,48(7):408−414. [HE T Y, YIN X, SUN B, et al. Antimicrobial mechanisms and applications of antimicrobial surfactants[J]. China Surfactant Detergent & Cosmetics,2018,48(7):408−414.
    [34] CHANG C, ZHANG L. Cellulose-based hydrogels: Present status and application prospects[J]. Carbohydrate Polymers,2011,84(1):40−53. doi: 10.1016/j.carbpol.2010.12.023
    [35] SHAGHALEH H, HAMOUD Y A, XU X, et al. Thermo-/pH-responsive preservative delivery based on TEMPO cellulose nanofiber/cationic copolymer hydrogel film in fruit packaging[J]. International Journal of Biological Macromolecules,2021,183:1911−1924. doi: 10.1016/j.ijbiomac.2021.05.208
    [36] SHARIATINIA Z, JALALI A M. Chitosan-based hydrogels: Preparation, properties and applications[J]. International Journal of Biological Macromolecules,2018,115:194−220. doi: 10.1016/j.ijbiomac.2018.04.034
    [37] 夏金兰, 王春, 刘新星. 抗菌剂及其抗菌机理[J]. 中南大学学报(自然科学版),2004(1):31−38. [XIA J L, WANG C, LIU X X. Research on antimicrobial agents and their mechanisms of actions[J]. Journal of Central South University (Science and Technology),2004(1):31−38.
    [38] CHEN H, XING X, TAN H, et al. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing[J]. Materials Science & Engineering C,2017,70(Pt1):287−295.
    [39] KANG X, DENG L, YI L, et al. A facile method for preparation of green and antibacterial hydrogel based on chitosan and water-soluble 2, 3-dialdehyde cellulose[J]. Cellulose,2021,28(10):6403−6416. doi: 10.1007/s10570-021-03879-7
    [40] 刘玉华, 魏宏亮, 李松茂, 等. 淀粉基水凝胶的研究进展[J]. 化工进展,2021,40(12):6738−6751. [LIU Y H, WEI H L, LI S M, et al. Research progress of starch-based hydrogels[J]. Chemical Industry and Engineering Progress,2021,40(12):6738−6751.
    [41] CHIN S F, ROMAINOR A N B, PANG S C, et al. Antimicrobial starch-citrate hydrogel for potential applications as drug delivery carriers[J]. Journal of Drug Delivery Science and Technology,2019,54:101239. doi: 10.1016/j.jddst.2019.101239
    [42] 肖九梅. 解读食品抗菌剂包装材料的性能特点及其应用机理[J]. 塑料包装,2017,27(6):22−28. [XIAO J M. Reading performance characteristics and the application mechanism of food antimicrobial packaging materials[J]. Plastics Packaging,2017,27(6):22−28.
    [43] SAIDIN S, JUMAT M A, MOHD AMIN N A A, et al. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application[J]. Materials Science and Engineering: C,2021,118:111382. doi: 10.1016/j.msec.2020.111382
    [44] HAMAD A, KHASHAN K S, HADI A. Silver nanoparticles and silver ions as potential antibacterial agents[J]. Journal of Inorganic and Organometallic Polymers and Materials,2020,30(12):4811−4828. doi: 10.1007/s10904-020-01744-x
    [45] DAI T, WANG C, WANG Y, et al. A nanocomposite hydrogel with potent and broad-spectrum antibacterial activity[J]. ACS Applied Materials & Interfaces,2018,10(17):15163−15173.
    [46] BOCCALON E, PICA M, ROMANI A, et al. Facile preparation of organic-inorganic hydrogels containing silver or essential oil with antimicrobial effects[J]. Applied clay Science,2020,190:105567. doi: 10.1016/j.clay.2020.105567
    [47] 马超, 吴瑛. 抗菌剂抗菌机理简述[J]. 中国酿造,2016,35(1):5−9. [MA C, WU Y. Research on antimicrobial agents and their mechanism of actions[J]. China Brewing,2016,35(1):5−9.
    [48] ZHANG J, TAN W, LI Q, et al. Preparation of cross-linked chitosan quaternary ammonium salt hydrogel films loading drug of gentamicin sulfate for antibacterial wound dressing[J]. Marine Drugs,2021,19(9):479. doi: 10.3390/md19090479
    [49] ALVES F, GOMES GUIMARÃES G, MAYUMI INADA N, et al. Strategies to improve the antimicrobial efficacy of photodynamic, sonodynamic, and sonophotodynamic therapies[J]. Lasers in Surgery and Medicine,2021,53(8):1113−1121. doi: 10.1002/lsm.23383
    [50] CUI Q, YUAN H, BAO X, et al. Synergistic photodynamic and photothermal antibacterial therapy based on a conjugated polymer nanoparticle-doped hydrogel[J]. ACS Applied Bio Materials,2020,3(7):4436−4443. doi: 10.1021/acsabm.0c00423
    [51] FEDATTO ABELHA T, RODRIGUES LIMA CAIRES A. Light-activated conjugated polymers for antibacterial photodynamic and photothermal therapy[J]. Advanced NanoBiomed Research,2021,1(7):2100012. doi: 10.1002/anbr.202100012
    [52] 刘东亮, 饶璐, 赵媛, 等. 光敏抗菌复合水凝胶的辐射制备及应用现状[J]. 辐射研究与辐射工艺学报,2021,39(6):4−12. [LIU D L, RAO L, ZHAO Y, et al. Radiation preparation and application status of photosensitive antibacterial composite hydrogel[J]. Journal of Radiation Research and Radiation Processing,2021,39(6):4−12.
    [53] 陈鹏, 杨凤英, 顾志鹏, 等. 抗氧化水凝胶的研究进展[J]. 功能高分子学报,2021,34(2):182−194. [CHEN P, YANG F Y, GU Z P, et al. Recent progress in antioxidant hydrogels[J]. Journal of Functional Polymers,2021,34(2):182−194.
    [54] ZHU S, SONG Y, PEI J, et al. The application of photodynamic inactivation to microorganisms in food[J]. Food Chemistry: X,2021,12:100150. doi: 10.1016/j.fochx.2021.100150
    [55] KUMAR A V P, DUBEY S K, TIWARI S, et al. Recent advances in nanoparticles mediated photothermal therapy induced tumor regression[J]. International Journal of Pharmaceutics,2021,606:120848. doi: 10.1016/j.ijpharm.2021.120848
    [56] TAO B, LIN C, DENG Y, et al. Copper-nanoparticle-embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy[J]. Journal of Materials Chemistry B,2019,7(15):2534−2548. doi: 10.1039/C8TB03272F
    [57] CHEN L, CHEN M, ZHOU Y, et al. NIR photosensitizer for two-photon fluorescent imaging and photodynamic therapy of tumor[J]. Frontiers in Chemistry,2021:9.
    [58] DENG K, LI C, HUANG S, et al. Recent progress in near infrared light triggered photodynamic therapy[J]. Small, 2017, 13(44): 1702299.
    [59] UCUNCU M, MILLS B, DUNCAN S, et al. Polymyxin-based photosensitizer for the potent and selective killing of Gram-negative bacteria[J]. Chemical Communications,2020,56(26):3757−3760. doi: 10.1039/D0CC00155D
    [60] YANG Z, QIAO Y, LI J, et al. Novel type of water-soluble photosensitizer from Trichoderma reesei for photodynamic inactivation of Gram-positive bacteria[J]. Langmuir,2020,36(44):13227−13235. doi: 10.1021/acs.langmuir.0c02109
    [61] 董建成, 葛孝栋, 王清清, 等. 阳离子光敏抗菌型水凝胶的制备及性能表征[J]. 材料工程,2019,47(2):56−61. [DONG J C, GE X D, WANG Q Q, et al. Preparation and property characterization of cationic photo antimicrobial hydrogel[J]. Journal of Materials Engineering,2019,47(2):56−61. doi: 10.11868/j.issn.1001-4381.2017.000588
    [62] BATISTA R A, ESPITIA P J P, QUINTANS J D S S, et al. Hydrogel as an alternative structure for food packaging systems[J]. Carbohydrate Polymers,2019,205:106−116. doi: 10.1016/j.carbpol.2018.10.006
    [63] EL-MEKAWY R E, ELHADY H A, AL-SHAREEF H F. Highly stretchable, smooth, and biodegradable hydrogel films based on chitosan as safety food packaging[J]. Polymers & Polymer Composites,2021,29(6):563−573.
    [64] BANDYOPADHYAY S, SAHA N, BRODNJAK U V, et al. Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: Characterized for packaging fresh berries[J]. Food Packaging and Shelf Life,2019,22:100402. doi: 10.1016/j.fpsl.2019.100402
    [65] 李瑶瑶, 李喜宏, 邓玉璞, 等. 脐橙新型壳聚糖水凝胶抑菌保鲜研究[J]. 食品工业科技,2013,34(23):328−332. [LI Y Y, LI X H, DENG Y P, et al. Study on the inhibition and preservation of new chitosan hydrogel in Navel orange[J]. Science and Technology of Food Industry,2013,34(23):328−332. doi: 10.13386/j.issn1002-0306.2013.23.063
    [66] YE Y, GUO H, SUN X. Recent progress on cell-based biosensors for analysis of food safety and quality control[J]. Biosensors and Bioelectronics,2019,126:389−404. doi: 10.1016/j.bios.2018.10.039
    [67] LU P, YANG Y, LIU R, et al. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging[J]. Carbohydrate Polymers,2020,249:116831. doi: 10.1016/j.carbpol.2020.116831
    [68] CHENG H, XU H, JULIAN MCCLEMENTS D, et al. Recent advances in intelligent food packaging materials: Principles, preparation and applications[J]. Food Chemistry,2022,375:131738. doi: 10.1016/j.foodchem.2021.131738
    [69] GAIKWAD K K, SINGH S, AJJI A. Moisture absorbers for food packaging applications[J]. Environmental Chemistry Letters,2019,17(2):609−628. doi: 10.1007/s10311-018-0810-z
    [70] EBRAHIMI TIRTASHI F, MORADI M, TAJIK H, et al. Cellulose/chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging[J]. International Journal of Biological Macromolecules,2019,136:920−926. doi: 10.1016/j.ijbiomac.2019.06.148
    [71] ZHAO L, ZHANG Z, WANG M, et al. New insights into the changes of the proteome and microbiome of shrimp (Litopenaeus vannamei) stored in acidic electrolyzed water ice[J]. Journal of Agricultural and Food Chemistry,2018,66(19):4966−4976. doi: 10.1021/acs.jafc.8b00498
    [72] ZOU J, WANG L, SUN G. Sustainable and reusable gelatin-based hydrogel "Jelly Ice Cubes" as food coolant. I: Feasibilities and challenges[J]. ACS Sustainable Chemistry & Engineering,2021,9(46):15357−15364.
    [73] ZOU J, SBODIO A O, BLANCO ULATE B, et al. Novel robust, reusable, microbial-resistant, and compostable protein-based cooling media[J]. Advanced Functional Materials,2022:2201347.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  35
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回