留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载花色苷的壳聚糖-水杨醛水凝胶的制备及性能

李煦 董翠芳 刘长霞 凌含悦 李英 范小振

李煦,董翠芳,刘长霞,等. 负载花色苷的壳聚糖-水杨醛水凝胶的制备及性能[J]. 食品工业科技,2023,44(9):111−118. doi: 10.13386/j.issn1002-0306.2022060293
引用本文: 李煦,董翠芳,刘长霞,等. 负载花色苷的壳聚糖-水杨醛水凝胶的制备及性能[J]. 食品工业科技,2023,44(9):111−118. doi: 10.13386/j.issn1002-0306.2022060293
LI Xu, DONG Cuifang, LIU Changxia, et al. Preparation and Properties of Chitosan Salicylaldehyde Hydrogel Loaded with Anthocyanins[J]. Science and Technology of Food Industry, 2023, 44(9): 111−118. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060293
Citation: LI Xu, DONG Cuifang, LIU Changxia, et al. Preparation and Properties of Chitosan Salicylaldehyde Hydrogel Loaded with Anthocyanins[J]. Science and Technology of Food Industry, 2023, 44(9): 111−118. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060293

负载花色苷的壳聚糖-水杨醛水凝胶的制备及性能

doi: 10.13386/j.issn1002-0306.2022060293
基金项目: 沧州市重点研发项目(213104001);河北省高等学校科学研究项目(ZC2022044);河北省“三三三人才工程”资助项目(A202001102);河北省高等教育教学改革研究与实践项目(2020GJJG368);沧州师范学院科研创新团队资助(cxtdl1901)。
详细信息
    作者简介:

    李煦(1984−),女,硕士,副教授,研究方向:天然产物化学,E-mail:lixu__2004@163.com

    通讯作者:

    范小振(1966−),男,硕士,教授,研究方向:天然产物化学,E-mail:fxz0315@126.com

  • 中图分类号: TQ317.4

Preparation and Properties of Chitosan Salicylaldehyde Hydrogel Loaded with Anthocyanins

  • 摘要: 在蓝莓花色苷(ACNs)存在下,以水杨醛为交联剂原位构筑了负载ACNs的壳聚糖水凝胶(ACNs/CS-SA),表征了其结构和形貌,研究了其稳定性、溶胀性能和缓释性能。FT-IR和XRD表征结果表明ACNs通过物理包埋均匀分散在水凝胶三维网络结构中;TG-DTG表征结果表明凝胶包埋显著提高了ACNs的热稳定性;ACNs/CS-SA的溶胀性能和缓释性能均展现出pH响应性;在pH2.7、4.6、6.7介质中,ACNs/CS-SA 24 h累计释药率分别为74.28%±4.58%、40.72%±4.04%和15.70%±1.71%;释放过程符合Weibull方程,R2分别为0.99405、0.95165和0.99712。鉴于ACNs/CS-SA的pH响应性能和对ACNs热稳定性的提高,本研究有望为新型药物包封材料的开发和ACNs的应用提供理论和实验基础。

     

  • 图  不同负载量的ACNs/CS-SA照片

    Figure  1.  Photos of ACNs/CS-SA with different loads

    图  ACNs、CS-SA和不同负载量ACNs/CS-SA的FT-IR表征

    注:a:ACNs;b:CS-SA;c:20% ACNs/CS-SA;d:100% ACNs/CS-SA;e:150% ACNs/CS-SA;图3图4同。

    Figure  2.  FT-IR spectra of ACNs, CS-SA and ACNs/CS-SA with different loads

    图  ACNs、CS-SA和不同负载量ACNs/CS-SA的UV-Vis表征

    Figure  3.  UV-Vis spectra of ACNs, CS-SA and ACNs/CS-SA with different loads

    图  ACNs、CS-SA和不同负载量ACNs/CS-SA的XRD表征

    Figure  4.  X-ray diffraction patterns of ACNs, CS-SA and ACNs/CS-SA with different loads

    图  ACNs/CS-SA组装示意图

    Figure  5.  Assembly mechanism of ACNs/CS-SA

    图  CS-SA和不同负载量ACNs/CS-SA的SEM表征

    Figure  6.  Assembly mechanism of CS-SA and ACNs/CS-SA with different loads

    图  ACNs、CS-SA和100% ACNs/CS-SA的TG(A)、DTG(B)表征

    Figure  7.  TG (A), DTG (B) curves of ACNs, CS-SA and 100% ACNs/CS-SA

    图  不同pH条件下100% ACNs/CS-SA(A)和CS-SA(B)的溶胀性能

    Figure  8.  Swelling performance of 100% ACNs/CS-SA (A) and CS-SA (B) with different pH

    图  不同pH条件下100% ACNs/CS-SA的缓释性能

    Figure  9.  Sustained release performance of 100% ACNs/CS-SA with different pH

    表  1  100% ACNs/CS-SA释放动力学模型分析

    Table  1.   Release dynamics model analysis of 100% ACNs/CS-SA

    模型方程R2
    pH2.7准一级$\rm Q = 64.22519 \times [1 - \exp ( - 0.00683t)] $0.89566
    准二级$\rm Q = 1/(0.01328+1.63956/x) $0.95617
    Higuchi$\rm Q = 1.94371{t^{1/2}}+12.00928 $0.91015
    Weibull$\rm Q = 77.49016 \times \{ 1 - {e^{ - {{[0.00362(t+15.10121)]}^{0.7096}}}}\} $0.99405
    Pepaas$\rm Q = 6.90565{t^{0.33862}} $0.95904
    pH4.6准一级$\rm Q = 34.54011 \times [1 - \exp ( - 0.01705t)] $0.81687
    准二级$\rm Q = 1/(0.02534+1.21956/x) $0.91344
    Higuchi$\rm Q = 0.94346{t^{1/2}}+13.24074 $0.76389
    Weibull$\rm Q = 46.15881 \times \{ 1 - {e^{ - {{[0.00613(t - 7.72996)]}^{0.40212}}}}\} $0.95165
    Pepaas$\rm Q = 7.594{t^{0.24816}} $0.88208
    pH6.7准一级$\rm Q = 16.46357 \times [1 - \exp ( - 0.00273t)] $0.96812
    准二级$\rm Q = 1/(0.0473+19.09845/x) $0.94464
    Higuchi$\rm Q = 0.46828{t^{1/2}}+0.02852 $0.83522
    Weibull$\rm Q = 15.6828 \times \{ 1 - {e^{ - {{[0.00289(t+29.80457)]}^{1.63029}}}}\} $0.99712
    Pepaas$\rm Q = 0.61095{t^{0.45867}} $0.84236
    下载: 导出CSV
  • [1] ZHANG Y Z, YIN L Q, HUANG L, et al. Composition, antioxidant activity, and neuroprotective effects of anthocyanin-rich extract from purple highland barley bran and its promotion on autophagy[J]. Food Chemistry,2021,339(3):127849.
    [2] MILENKOVIC D, KRGA I, DINEL A L, et al. Nutrigenomic modification induced by anthocyanin-rich bilberry extract in the hippocampus of ApoE-/-mice[J]. Journal of Functional Foods,2021,85(10):104609.
    [3] GARCIA C, BLESSO C N. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis[J]. Free Radical Biology and Medicine,2021,172(8):152−166.
    [4] GHAREAGHAJLOU N, HALLAJ-NEZHADI S, GHASEMPOUR Z. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems[J]. Food Chemistry,2021,365(12):130482.
    [5] PIMENTA INADA K O, REVOREDO SILVA T B, ARAUJO LOBO L, et al. Bioaccessibility of phenolic compounds of jaboticaba (Plinia jaboticaba) peel and seed after simulated gastrointestinal digestion and gut microbiota fermentation[J]. Journal of Functional Foods,2020,67(4):103851.
    [6] LEE J Y, JO Y U, SHIN H, et al. Anthocyanin-fucoidan nanocomplex for preventing carcinogen induced cancer: Enhanced absorption and stability[J]. International Journal of Pharmaceutics,2020,586(8):119597.
    [7] GUYOT C, CERRUTI M, LEROUGE S. Injectable, strong and bioadhesive catechol-chitosan hydrogels physically crosslinked using sodium bicarbonate[J]. Materials Science and Engineering:C,2021,118(1):111529.
    [8] XIE C J, WANG Q, YING R F, et al. Binding a chondroitin sulfate-based nanocomplex with kappa-carrageenan to enhance the stability of anthocyanins[J]. Food Hydrocolloid,2020,100(3):105448.
    [9] JIN W P, XIANG L, PENG D F, et al. Study on the coupling progress of thermo-induced anthocyanins degradation and polysaccharides gelation[J]. Food Hydrocolloids,2020,105(8):105822.
    [10] LIU L Y, ZHANG D D, SONG X X, et al. Compound hydrogels derived from gelatin and gellan gum regulates the release of anthocyanins in simulated digestion[J]. Food Hydrocolloids,2022,127(6):107487.
    [11] LI L, ZHANG P, LI C C, et al. In vitro/vivo antitumor study of modified-chitosan/carboxymethyl chitosan “boosted” charge-reversal nanoformulation[J]. Carbohyd Polymers,2021,269(10):118268.
    [12] IFTIME M M, MORARIU S, MARIN L. Salicyl-imine-chitosan hydrogels: Supramolecular architecturing as a crosslinking method toward multifunctional hydrogels[J]. Carbohyd Polymers,2017,165(2):39−50.
    [13] IFTIME M M, AILIESEI G L, UNGUREANU E, et al. Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea controlled release and water retention[J]. Carbohydrate Polymers,2019,223(11):115040.
    [14] LIU C X, DONG C F, LIU S H, et al. Multiple chiroptical switches and logic circuit based on salicyl-imine-chitosan hydrogel[J]. Carbohyd Polymers,2021,257(4):117534.
    [15] BARDA C, GRAFAKOU M E, KALPOUTZAKISA E, et al. Chemical composition of Crepis foetida L. and C. rubra L. volatile constituents and evaluation of the in vitro anti-inflammatory activity of salicylaldehyde rich volatile fraction[J]. Biochemical Systematics and Ecology,2021,9(6):104256.
    [16] JANES D, KREFT S. Salicylaldehyde is a characteristic aroma component of buckwheat groats[J]. Food Chemistry,2008,109(2):293−298. doi: 10.1016/j.foodchem.2007.12.032
    [17] SCHMIDT L, WIELSCH N, WANG D, et al. Tissue-specific profiling of membrane proteins in the salicin sequestering juveniles of the herbivorous leaf beetle, Chrysomela populi[J]. Insect Biochemistry and Molecular Biology,2019,109(6):81−91.
    [18] 王洪玲, 崔维真, 刘强, 等. 水杨醛交联壳聚糖构筑新型壁材包囊花椒油研究[J]. 食品与发酵工业,2022,48(8):199−204. [WANG Hongling, CUI Weizhen, LIU Qiang, et al. New wall material prepared by salicylaldehyde crosslinking chitosan encapsulated Zanthoxylum bungeanum oil[J]. Food and Fermentation Industries,2022,48(8):199−204. doi: 10.13995/j.cnki.11-1802/ts.029885
    [19] 谢凤英, 李凤凤, 张爽, 等. 黑米花色苷酰化修饰红外光谱分析[J]. 光谱学与光谱分析,2018,38(8):2386−2389. [XIE Fengying, LI Fengfeng, ZHANG Shuang, et al. Analysis of acylation modification of black rice anthocyanins using Fourier transform infrared spectroscopy (FTIR)[J]. Spectroscopy and Spectral Analysis,2018,38(8):2386−2389.
    [20] 薛宏坤, 李鹏程, 钟雪, 等. 高速逆流色谱分离纯化桑葚花色苷及其抗氧化活性[J]. 食品科学,2020,41(15):96−104. [XUE Hongkun, LI Pengcheng, ZHONG Xue, et al. Separation and purification of anthocyanins from mulberry fruit by high-speed counter-current chromatography and their antioxidant activity[J]. Food Science,2020,41(15):96−104. doi: 10.7506/spkx1002-6630-20190715-193
    [21] 王锋, 邓洁红, 谭兴和, 等. 花色苷及其共色作用研究进展[J]. 食品科学,2008,29(2):472−476. [WANG Feng, DENG Jiehong, TAN Xinghe, et al. Research progress on anthocyanins and copigmentation[J]. Food Science,2008,29(2):472−476. doi: 10.3321/j.issn:1002-6630.2008.02.104
    [22] WANG D, MA Y, ZHANG C, et al. Thermal characterization of the anthocyanins from black soybean (Glycine max L.) exposed to thermogravimetry[J]. LWT-Food Science and Technology,2014,55(2):645−649. doi: 10.1016/j.lwt.2013.10.007
    [23] WEN Y Y, LIU J, JIANG L, et al. Development of intelligent/active food packaging film based on TEMPO-oxidized bacterial cellulose containing thymol and anthocyanin-rich purple potato extract for shelf life extension of shrimp[J]. Food Packaging and Shelf Life,2021,29(9):100709.
    [24] HERAS-MOZOS R, HERNANDEZ R, GAVARA R, et al. Dynamic covalent chemistry of imines for the development of stimuli-responsive chitosan films as carriers of sustainable antifungal volatiles[J]. Food Hydrocolloids,2022,125(4):107326.
    [25] 董翠芳, 王洪玲, 刘长霞, 等. pH响应的壳聚糖-糠醛水凝胶的构筑及自愈合性能[J]. 高分子材料科学与工程,2020,36(11):127−133,138. [DONG Cuifang, WANG Hongling, LIU Changxia, et al. Fabrication of pH responsive chitosan-furfural hydrogel and its self-healing abilit[J]. Polymer Materials Science & Engineering,2020,36(11):127−133,138. doi: 10.16865/j.cnki.1000-7555.2020.0253
    [26] IFTIME M M, TARTAU L M, MARIN L. New formulations based on salicyl-imine-chitosan hydrogels for prolonged drug release[J]. International Journal of Biological Macromolecules,2020,160(10):398−408.
    [27] CRACIUN A M, TARTAU L M, PINTEALA M, et al. Nitrosalicyl-imine-chitosan hydrogels based drug delivery systems for long term sustained release in local therapy[J]. Journal of Colloid and Interface Science,2019,536(2):196−207.
    [28] 刘中垒, 李国玉, 谭勇, 等. 红花黄色素缓释骨架片的研制及其体外释放度的研究[J]. 石河子大学学报(自然科学版),2009,27(3):328−333. [LIU Zhonglei, LI Gongyu, TAN Yong, et al. The preparation of safflower yellow sustained-release matrix tablets and their drug release in vitro[J]. Journal of Shihezi University (Natural Science),2009,27(3):328−333. doi: 10.3969/j.issn.1007-7383.2009.03.014
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回