Effects of High Hydrostatic-Pressure Combined with Heat Treatment on the Structure and Gel Properties of Myofibrillar Protein: A Review
-
摘要: 作为一项非热加工技术,超高压(high hydrostatic pressure,HHP)技术常被用于改变蛋白质的结构和理化性质。将超高压与热处理相结合不仅能够降低所需压力和时间,还能大大改善肉制品的品质。本文系统综述了温-压结合处理技术(temperature-pressure combined treatment technology,TP)对肌原纤维蛋白(myofibrillar proteins,MP)结构及凝胶特性的影响,并对其作用机制进行了探讨,以期为该技术的应用和推广提供理论支持。Abstract: As a non-thermal processing technology, high hydrostatic pressure (HHP) technology is often used to change the structure and physicochemical properties of proteins. Combining HHP with heat treatment can not only reduce the pressure and time required for HHP treatment, but also greatly improve the quality of meat products. In this paper, the effects of temperature-pressure combined treatment technology (TP) on the structure and gel properties of myofibrillar proteins (MP) together with the relevant mechanism are systematically reviewed, providing theoretical support for the application and promotion of this technology.
-
表 1 TP处理过程中部分MP的凝胶强度
Table 1. Gel strength of some MP during TP treatment
原料 蛋白质 超高压参数 热处理参数 最优超高压(MPa) 凝胶强度 参考文献 金线鱼 鱼糜蛋白 100~600 MPa/15 min 40 ℃/30 min+90 ℃/20 min 100 1009.40 g·cm [43] 兔 肌球蛋白 100~200 MPa/2 min 80 ℃/20 min 150 14.64 g [57] 飞鱼 鱼糜蛋白 40~200 MPa/10 min 40 ℃/30 min+90 ℃/30 min 80 65.52 N·mm [58] 带鱼 鱼糜蛋白 350~400 MPa/8 min 90 ℃/30 min 350 8568 g·mm [59] 金线鱼 肌球蛋白 100~500 MPa/3 min 80 ℃/30 min 300 − [12] 尖吻鲈 鱼糜蛋白 300~500 MPa/10 min 50 ℃/10 min 500 − [60] 鸡胸肉 MP 200~400 MPa/30 min 75 ℃/30 min 200 − [61] 鸡胸肉 肌球蛋白 100~400 MPa/10 min 70 ℃/30 min 200 − [62] 罗非鱼 鱼糜蛋白 50~300 MPa/30 min 90 ℃/20 min 200 − [63] 鳙鱼 鱼糜蛋白 400~600 MPa/15 min 90 ℃/25 min 400 − [64] 注:“−”表示文中未列出具体的凝胶强度值。 -
[1] CHOI Y M, KIM B C. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality[J]. Livestock Science,2009,122(2−3):105−118. doi: 10.1016/j.livsci.2008.08.015 [2] 耿翠竹, 王海滨, 崔莹莹, 等. 蛋白质降解对猪肉制品品质影响的研究进展[J]. 肉类研究,2016,30(2):35−39. [GENG C Z, WANG H B, CUI Y Y, et al. A review of the influence of protein degradation on the quality of pork products[J]. Meat Research,2016,30(2):35−39. [3] LIANG Y, GUO B, ZHOU A, et al. Effect of high pressure treatment on gel characteristics and gel formation mechanism of bighead carp (Aristichthys nobilis) surimi gels[J]. Journal of Food Processing and Preservation,2017,41(5):e13155. doi: 10.1111/jfpp.13155 [4] FENG D, XUE Y, LI Z, et al. Effects of microwave radiation and water bath heating on the physicochemical properties of actomyosin from silver carp (Hypophthalmichthys molitrix) during setting[J]. Journal of Food Processing and Preservation,2017,41(4):e13031. doi: 10.1111/jfpp.13031 [5] YAN B, PARK S H, BALASUBRAMANIAM V M. Influence of high pressure homogenization with and without lecithin on particle size and physicochemical properties of whey protein-based emulsions[J]. Journal of Food Process Engineering,2017,40(6):e12578. doi: 10.1111/jfpe.12578 [6] STANIC-VUCINIC D, VELICKOVIC T C. The modifications of bovine beta-lactoglobulin-effects on its structural and functional properties[J]. Journal of the Serbian Chemical Society,2013,78(3):445−461. doi: 10.2298/JSC120810155S [7] SHAO S, SHEN X, GUO M. Zinc-loaded whey protein nanoparticles prepared by enzymatic cross-linking and desolvation[J]. International Journal of Food Science and Technology,2018,53(9):2205−2211. doi: 10.1111/ijfs.13809 [8] JUNG S, LAMSAL B P, STEPIEN V, et al. Functionality of soy protein produced by enzyme-assisted extraction[J]. Journal of the American Oil Chemists Society,2006,83(1):71−78. doi: 10.1007/s11746-006-1178-y [9] YANG C, WANG Y, VASANTHAN T, et al. Impacts of pH and heating temperature on formation mechanisms and properties of thermally induced canola protein gels[J]. Food Hydrocolloids,2014,40:225−236. doi: 10.1016/j.foodhyd.2014.03.011 [10] LIU R, ZHAO S, LIU Y, et al. Effect of pH on the gel properties and secondary structure of fish myosin[J]. Food Chemistry,2010,121(1):196−202. doi: 10.1016/j.foodchem.2009.12.030 [11] 刘兴静, 刘斌, 韩清华, 等. 超高压对苹果汁微生物和多酚氧化酶的影响[J]. 食品研究与开发,2012,33(9):4−6. [LIU X J, LIU B, HAN Q H, et al. Effect of ultra high pressure treatment on bacterium and polyphenol oxidase of apple juice[J]. Food Research and Development,2012,33(9):4−6. [12] GUO Z, LI Z, WANG J, et al. Gelation properties and thermal gelling mechanism of golden threadfin bream myosin containing CaCl2 induced by high pressure processing[J]. Food Hydrocolloids,2019,95:43−52. doi: 10.1016/j.foodhyd.2019.04.017 [13] MIRMOGHTADAIE L, ALIABADI S S, HOSSEINI S M. Recent approaches in physical modification of protein functionality[J]. Food Chemistry,2016,199:619−627. doi: 10.1016/j.foodchem.2015.12.067 [14] MARCINIAK A, SUWAL S, NADERI N, et al. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology[J]. Trends in Food Science & Technology,2018,80:187−198. [15] WANG B, LIU F, LUO S, et al. Effects of high hydrostatic pressure on the properties of heat-induced wheat gluten gels[J]. Food and Bioprocess Technology,2019,12(2):220−227. doi: 10.1007/s11947-018-2205-3 [16] BUAMARD N, BENJAKUL S. Combination effect of high pressure treatment and ethanolic extract from coconut husk on gel properties of sardine surimi[J]. LWT,2018,91:361−367. doi: 10.1016/j.lwt.2018.01.074 [17] HAMADA M, ISHIZAKI S, NAGAI T. Variation of SH content and kamaboko-gel forming ability of shark muscle protein by electrolysis[J]. Journal of the Shimonoseki University of Fisheries,1994,42(3):131−135. [18] CAO Y, XIA T, ZHOU G, et al. The mechanism of high pressure-induced gels of rabbit myosin[J]. Innovative Food Science & Emerging Technologies,2012,16:41−46. [19] 郭丽萍, 熊双丽, 黄业传. 超高压结合热处理对猪肉蛋白质相互作用力及结构的影响[J]. 现代食品科技,2016,32(2):196−204. [GUO L P, XIONG S L, HUANG Y C. Effects of ultra-high pressure combined with thermal treatment on molecular interaction and structure of pork proteins[J]. Modern Food Science and Technology,2016,32(2):196−204. [20] ZHOU A, LIN L, LIANG Y, et al. Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure[J]. Food Chemistry,2014,156:402−407. doi: 10.1016/j.foodchem.2014.02.013 [21] LIU R, ZHAO S, XIE B, et al. Contribution of protein conformation and intermolecular bonds to fish and pork gelation properties[J]. Food Hydrocolloids,2011,25(5):898−906. doi: 10.1016/j.foodhyd.2010.08.016 [22] CANDO D, MORENO H M, TOVAR C A, et al. Effect of high pressure and/or temperature over gelation of isolated hake myofibrils[J]. Food and Bioprocess Technology,2014,7(11):3197−3207. doi: 10.1007/s11947-014-1279-9 [23] VISSCHERS R W, DE JONGH H H J. Disulphide bond formation in food protein aggregation and gelation[J]. Biotechnology Advances,2005,23(1):75−80. doi: 10.1016/j.biotechadv.2004.09.005 [24] ZHANG Z, YANG Y, TANG X, et al. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure[J]. Food Chemistry,2015,188:111−118. doi: 10.1016/j.foodchem.2015.04.129 [25] CANDO D, HERRANZ B, BORDERIAS A J, et al. Effect of high pressure on reduced sodium chloride surimi gels[J]. Food Hydrocolloids,2015,51:176−187. doi: 10.1016/j.foodhyd.2015.05.016 [26] QIU C, XIA W, JIANG Q. Pressure-induced changes of silver carp (Hypophthalmichthys molitrix) myofibrillar protein structure[J]. European Food Research and Technology,2014,238(5):753−761. doi: 10.1007/s00217-014-2155-6 [27] LI Z, WANG J, ZHENG B, et al. Effects of high pressure processing on gelation properties and molecular forces of myosin containing deacetylated konjac glucomannan[J]. Food Chemistry,2019,291:117−125. doi: 10.1016/j.foodchem.2019.03.146 [28] NAKAI S, LI C E. Hydrophobicity-functionality relationship of food proteins[J]. Hydrophobic Interactions in Food Systems,1988,2:47−48. [29] WINTER R, DZWOLAK W. Exploring the temperature-pressure configurational landscape of biomolecules: From lipid membranes to proteins[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2005,363(1827):537−563. doi: 10.1098/rsta.2004.1507 [30] BALANGE A K, BENJAKUL S. Cross-linking activity of oxidised tannic acid towards mackerel muscle proteins as affected by protein types and setting temperatures[J]. Food Chemistry,2010,120(1):268−277. doi: 10.1016/j.foodchem.2009.10.019 [31] WANG M, CHEN X, ZOU Y, et al. High-pressure processing-induced conformational changes during heating affect water holding capacity of myosin gel[J]. International Journal of Food Science and Technology,2017,52(3):724−732. doi: 10.1111/ijfs.13327 [32] HUANG Y, GUO L, XIONG S, et al. Property and structure changes of myofibril protein in pork treated by high pressure combined with heat[J]. Food Science and Technology International,2016,22(7):647−662. doi: 10.1177/1082013216642610 [33] WANG J, LI Z, ZHENG B, et al. Effect of ultra-high pressure on the structure and gelling properties of low salt golden threadfin bream (Nemipterus virgatus) myosin[J]. LWT-Food Science and Technology,2019,100:381−390. doi: 10.1016/j.lwt.2018.10.053 [34] CHAN J K, GILL T A, PAULSON A T. Thermal aggregation of myosin subfragments from cod and herring[J]. Journal of Food Science,1993,58(5):1057−1061. doi: 10.1111/j.1365-2621.1993.tb06111.x [35] GÓMEZ-GUILLÉN M C, BORDERÍAS A J, MONTERO P. Chemical interactions of nonmuscle proteins in the network of sardine (Sardina pilchardus) muscle gels[J]. LWT,1997,30(6):602−608. doi: 10.1006/fstl.1997.0239 [36] 梁恽红, 卢涵, 张香美. 蛋白二、三级结构对鱼糜凝胶质构和持水力的影响及其测定方法研究进展[J]. 东北农业大学学报,2021,52(10):87−96. [LIANG Y H, LU H, ZHANG X M. Research progress on the effects of protein secondary and tertiary structures on texture and water-holding capacity of surimi gel and protein structure determination methods[J]. Journal of Northeast Agricultural University,2021,52(10):87−96. doi: 10.3969/j.issn.1005-9369.2021.10.009 [37] 励建荣, 余永名, 仪淑敏, 等. 鱼糜制品热凝胶形成机理研究进展[J]. 食品工业科技,2015,36(23):380−385. [LI J R, YU Y M, YI S M, et al. Research of progress in thermal gelation mechanisms of surimi products[J]. Science and Technology of Food Industry,2015,36(23):380−385. [38] GAO X, XIE Y, YIN T, et al. Effect of high intensity ultrasound on gelation properties of silver carp surimi with different salt contents[J]. Ultrasonics Sonochemistry,2021,70:105326. doi: 10.1016/j.ultsonch.2020.105326 [39] ZHANG L, LI Q, SHI J, et al. Changes in chemical interactions and gel properties of heat-induced surimi gels from silver carp (Hypophthalmichthys molitrix) fillets during setting and heating: Effects of different washing solutions[J]. Food Hydrocolloids,2018,75:116−124. doi: 10.1016/j.foodhyd.2017.09.007 [40] HSU K C, HWANG J S, YU C C, et al. Changes in conformation and in sulfhydryl groups of actomyosin of tilapia (Orechromis niloticus) on hydrostatic pressure treatment[J]. Food Chemistry,2007,103(2):560−564. doi: 10.1016/j.foodchem.2006.09.001 [41] MORILD E. The theory of pressure effects on enzymes[J]. Advances in Protein Chemistry,1981,34:93−166. [42] PITZER K S. The nature of the chemical bond and the structure of molecules and crystals: An introduction to modern structural chemistry[J]. Journal of the American Chemical Society,1960,82(15):4121−4121. [43] CHEN H, ZHOU A, BENJAKUL S, et al. The mechanism of low-level pressure coupled with heat treatment on water migration and gel properties of Nemipterus virgatus surimi[J]. LWT,2021,150:112086. doi: 10.1016/j.lwt.2021.112086 [44] LI X, HE X, MAO L, et al. Modification of the structural and rheological properties of β-lactoglobulin/κ-carrageenan mixed gels induced by high pressure processing[J]. Journal of Food Engineering,2020,274:109851. doi: 10.1016/j.jfoodeng.2019.109851 [45] SUN X D, HOLLEY R A. Factors influencing gel formation by myofibrillar proteins in muscle foods[J]. Comprehensive Reviews in Food Science and Food Safety,2011,10(1):33−51. doi: 10.1111/j.1541-4337.2010.00137.x [46] CEPERO-BETANCOURT Y, OPAZO-NAVARRETE M, JANSSEN A E M, et al. Effects of high hydrostatic pressure (HHP) on protein structure and digestibility of red abalone (Haliotis rufescens) muscle[J]. Innovative Food Science & Emerging Technologies,2020,60:102282. [47] WANG J, YANG Y, TANG X, et al. Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein[J]. Ultrasonics Sonochemistry,2017,38:225−233. doi: 10.1016/j.ultsonch.2017.03.018 [48] ZHANG Y, YANG R, ZHANG W, et al. Structural characterization and physicochemical properties of protein extracted from soybean meal assisted by steam flash-explosion with dilute acid soaking[J]. Food Chemistry,2017,219:48−53. doi: 10.1016/j.foodchem.2016.09.079 [49] LIU H, XU Y, ZU S, et al. Effects of high hydrostatic pressure on the conformational structure and gel properties of myofibrillar protein and meat quality: A review[J]. Foods,2021,10(8):1872. doi: 10.3390/foods10081872 [50] CHEN Y, XU A, YANG R, et al. Myofibrillar protein structure and gel properties of Trichiurus haumela surimi subjected to high pressure or high pressure synergistic heat[J]. Food and Bioprocess Technology,2020,13(4):589−598. doi: 10.1007/s11947-020-02416-x [51] IMTIAZ-UL-ISLAM M, HONG L, LANGRISH T. CO2 capture using whey protein isolate[J]. Chemical Engineering Journal,2011,171(3):1069−1081. doi: 10.1016/j.cej.2011.05.003 [52] XUE S, QIAN C, KIM Y H B, et al. High-pressure effects on myosin in relation to heat gelation: A micro-perspective study[J]. Food Hydrocolloids,2018,84:219−228. doi: 10.1016/j.foodhyd.2018.06.014 [53] GORDON A, BARBUT S. Mechanisms of meat batter stabilization: A review[J]. Critical Reviews in Food Science and Nutrition,1992,32(4):299−332. doi: 10.1080/10408399209527602 [54] LI Z, SUN Q, ZHENG Y, et al. Effect of two-step microwave heating on the gelation properties of golden threadfin bream (Nemipterus virgatus) myosin[J]. Food Chemistry,2020,328:127104. doi: 10.1016/j.foodchem.2020.127104 [55] LIU R, ZHAO S, XIONG S, et al. Role of secondary structures in the gelation of porcine myosin at different pH values[J]. Meat Science,2008,80(3):632−639. doi: 10.1016/j.meatsci.2008.02.014 [56] 仪淑敏, 马兴胜, 励建荣, 等. 超高压对金线鱼鱼肉肠凝胶特性的影响[J]. 食品工业科技,2014,35(10):129−133. [YI S M, MA X S, LI J R, et al. Effect of ultra-high pressure on gel properties of fish (Nemipterus virgatus) sausage[J]. Science and Technology of Food Industry,2014,35(10):129−133. [57] BAI Y, ZHANG Y, CUI X, et al. Effect of high-pressure treatment on the heat-induced emulsion gelation of rabbit myosin[J]. LWT,2022,154:112719. doi: 10.1016/j.lwt.2021.112719 [58] MORENO H M, BARGIELA V, TOVAR C A, et al. High pressure applied to frozen flying fish (Parexocoetus brachyterus) surimi: Effect on physicochemical and rheological properties of gels[J]. Food Hydrocolloids,2015,48:127−134. doi: 10.1016/j.foodhyd.2015.01.029 [59] CHEN Y, XU A, YANG R, et al. Chemical interactions and rheological properties of hairtail (Trichiurus haumela) surimi: Effects of chopping and pressure[J]. Food Bioscience,2020,38:100781. doi: 10.1016/j.fbio.2020.100781 [60] TRUONG B Q, BUCKOW R, NGUYEN M. Mechanical and functional properties of unwashed barramundi (Lates calcarifer) gels as affected by high-pressure processing at three different temperatures and salt concentrations[J]. Journal of Aquatic Food Product Technology,2020,29(4):373−382. doi: 10.1080/10498850.2020.1739792 [61] ZHENG H, HAN M, BAI Y, et al. Combination of high pressure and heat on the gelation of chicken myofibrillar proteins[J]. Innovative Food Science & Emerging Technologies,2019,52:122−130. [62] CHEN X, CHEN C, ZHOU Y, et al. Effects of high pressure processing on the thermal gelling properties of chicken breast myosin containin κ-carrageenan[J]. Food Hydrocolloids,2014,40:262−272. doi: 10.1016/j.foodhyd.2014.03.018 [63] TAN F, LAI K, HSU K. A comparative study on physical properties and chemical interactions of gels from tilapia meat pastes induced by heat and pressure[J]. Journal of Texture Studies,2010,41(2):153−170. doi: 10.1111/j.1745-4603.2010.00219.x [64] 郝磊勇, 李汴生, 阮征, 等. 高压与热结合处理对鱼糜凝胶质构特性的影响[J]. 食品与发酵工业,2005,31(7):35−38. [HAO L Y, LI B S, RUAN Z, et al. The effect of combined processes of high pressure and heat on surimi gel texture[J]. Food and Fermentation Industries,2005,31(7):35−38. doi: 10.3321/j.issn:0253-990X.2005.07.010 [65] WANG Y, ZHOU Y, WANG X, et al. Origin of high-pressure induced changes in the properties of reduced-sodium chicken myofibrillar protein gels containing CaCl2: Physicochemical and molecular modification perspectives[J]. Food Chemistry,2020,319:126535. doi: 10.1016/j.foodchem.2020.126535 [66] BENJAKUL S, CHANTARASUWAN C, VISESSANGUAN W. Effect of medium temperature setting on gelling characteristics of surimi from some tropical fish[J]. Food Chemistry,2003,82(4):567−574. doi: 10.1016/S0308-8146(03)00012-8 [67] LANIER T C, CARVAJAL P, YONGSAWATDIGUL J. Surimi gelation chemistry[J]. Surimi and Surimi Seafood,2005,2:436−489. [68] MA R, LIU H, LI Y, et al. Effects of high hydrostatic pressure treatment: Characterization of eel (Anguilla japonica) surimi, structure, and angiotensin-converting enzyme inhibitory activity of myofibrillar protein[J]. Food and Bioprocess Technology,2021,14(9):1631−1639. doi: 10.1007/s11947-021-02658-3 [69] ALIPOUR H J, REZAEI M, SHABANPOUR B, et al. Effects of sulfated polysaccharides from green alga ulva intestinalis on physicochemical properties and microstructure of silver carp surimi[J]. Food Hydrocolloids,2018,74:87−96. doi: 10.1016/j.foodhyd.2017.07.038 [70] LIU X, JI L, ZHANG T, et al. Effects of pre-emulsification by three food-grade emulsifiers on the properties of emulsified surimi sausage[J]. Journal of Food Engineering,2019,247:30−37. doi: 10.1016/j.jfoodeng.2018.11.018 [71] 朱金鹏, 王浩明, 郑海波, 等. 高压协同热处理改善鸡肉肠品质的研究[J]. 食品科技,2020,45(7):125−129. [ZHU J P, WANG H M, ZHENG H B, et al. Quality improvement of chicken sausage by heating under pressure[J]. Food Science and Technology,2020,45(7):125−129. [72] GUO B, ZHOU A, LIU G, et al. Changes of physicochemical properties of greater lizardfish (Saurida tumbil) surimi gels treated with high pressure combined with microbial transglutaminase[J]. Journal of Food Processing and Preservation,2019,43(10):e14150. [73] SHIE J S, PARK J W. Physical characteristics of surimi seafood as affected by thermal processing conditions[J]. Journal of Food Science,1999,64(2):287−290. doi: 10.1111/j.1365-2621.1999.tb15884.x [74] LIANG F, LIN L, HE T, et al. Effect of transglutaminase on gel properties of surimi and precocious Chinese mitten crab (Eriocheir sinensis) meat[J]. Food Hydrocolloids,2020,98:105261. doi: 10.1016/j.foodhyd.2019.105261 [75] URESTI R M, VELAZQUEZ G, RAMIREZ J A, et al. Effect of high-pressure treatments on mechanical and functional properties of restructured products from arrowtooth flounder (Atheresthes stomias)[J]. Journal of the Science of Food and Agriculture,2004,84(13):1741−1749. doi: 10.1002/jsfa.1876 [76] de OLIVEIRA F A, NETO O C, DOS SANTOS L M R, et al. Effect of high pressure on fish meat quality: A review[J]. Trends in Food Science & Technology,2017,66:1−19. [77] 李颖畅, 宋素珍, 杨钟燕, 等. 甲醛对鱿鱼肌原纤维蛋白凝胶特性的影响[J]. 中国食品学报,2019,19(8):60−69. [LI Y C, SONG S Z, YANG Z Y, et al. Effects of formaldehyde on the myofibrillar protein gel properties of peru squid[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(8):60−69. [78] NIELSEN G S, PETERSEN B R, MØLLER A J. Impact of salt, phosphate and temperature on the effect of a transglutaminase (F XIIIa) on the texture of restructured meat[J]. Meat Science,1995,41(3):293−299. doi: 10.1016/0309-1740(94)00002-O [79] SOUISSI N, JRIDI M, NASRI R, et al. Effects of the edible cuttlefish gelatin on textural, sensorial and physicochemical quality of octopus sausage[J]. LWT,2016,65:18−24. doi: 10.1016/j.lwt.2015.07.051 [80] BRIONES-LABARCA V, PEREZ-WON M, ZAMARCA M, et al. Effects of high hydrostatic pressure on microstructure, texture, colour and biochemical changes of red abalone (Haliotis rufecens) during cold storage time[J]. Innovative Food Science & Emerging Technologies,2012,13:42−50. [81] MARTÍNEZ-MALDONADO M A, VELAZQUEZ G, DE LEÓN J A R, et al. Effect of high pressure processing on heat-induced gelling capacity of blue crab (Callinectes sapidus) meat[J]. Innovative Food Science & Emerging Technologies,2020,59:102253. [82] HWANG J, LAI K, HSU K. Changes in textural and rheological properties of gels from tilapia muscle proteins induced by high pressure and setting[J]. Food Chemistry,2007,104(2):746−753. doi: 10.1016/j.foodchem.2006.11.075 [83] ZHENG H, HAN M, YANG H, et al. Application of high pressure to chicken meat batters during heating modifies physicochemical properties, enabling salt reduction for high quality products[J]. LWT,2017,84:693−700. doi: 10.1016/j.lwt.2017.06.006 [84] TRUONG B Q, BUCKOW R, NGUYEN M H, et al. Gelation of barramundi (Lates calcarifer) minced muscle as affected by pressure and thermal treatments at low salt concentration[J]. Journal of the Science of Food and Agriculture,2017,97(11):3781−3789. doi: 10.1002/jsfa.8242 [85] SPERONI F, SZERMAN N, VAUDAGNA S R. High hydrostatic pressure processing of beef patties: Effects of pressure level and sodium tripolyphosphate and sodium chloride concentrations on thermal and aggregative properties of proteins[J]. Innovative Food Science & Emerging Technologies,2014,23:10−17. [86] DONG M, XU Y, ZHANG Y, et al. Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: Effects of pulsed electric field (PEF)[J]. Innovative Food Science & Emerging Technologies,2020,59:102277. [87] LI Y, KONG B, XIA X, et al. Structural changes of the myofibrillar proteins in common carp (Cyprinus carpio) muscle exposed to a hydroxyl radical-generating system[J]. Process Biochemistry,2013,48(5):863−870. [88] 郑海波. 高压下加热处理对鸡肉糜凝胶品质的影响及机制研究[D]. 南京: 南京农业大学, 2018ZHENG H B. Effects of heating under pressure on the gelation of chicken batters and its mechanism[D]. Nanjing: Nanjing Agricultural University, 2018. [89] FERNANDEZ-MARTIN F. Bird muscles under hydrostatic high-pressure/temperature combinations: A DSC evaluation[J]. Journal of Thermal Analysis and Calorimetry,2007,87(1):285−290. doi: 10.1007/s10973-006-7809-6 [90] 康大成, 刘云国, 张万刚. 高功率超声波对蛋白质功能特性的影响及其在肉品加工中的应用研究进展[J]. 食品科学,2019,40(23):289−297. [KANG D C, LIU Y G, ZHANG W G. Recent advances in understanding the effect of high power ultrasound on protein functional characteristics and its applications in meat processing[J]. Food Science,2019,40(23):289−297. doi: 10.7506/spkx1002-6630-20181105-053 [91] CHANTARASUWAN C, BENJAKUL S, VISESSANGUAN W. The effects of sodium bicarbonate on conformational changes of natural actomyosin from Pacific white shrimp (Litopenaeus vannamei)[J]. Food Chemistry,2011,129(4):1636−1643. doi: 10.1016/j.foodchem.2011.06.023 [92] XUE Z, WANG M, CHEN X, et al. Conformational and rheological changes of high-pressure processing treated rabbit myosin subfragments during heating[J]. LWT,2020,122:108994. doi: 10.1016/j.lwt.2019.108994 [93] CAO H, JIAO X, FAN D, et al. Microwave irradiation promotes aggregation behavior of myosin through conformation changes[J]. Food Hydrocolloids,2019,96:11−19. doi: 10.1016/j.foodhyd.2019.05.002 [94] GROSSI A, OLSEN K, BOLUMAR T, et al. The effect of high pressure on the functional properties of pork myofibrillar proteins[J]. Food Chemistry,2016,196:1005−1015. doi: 10.1016/j.foodchem.2015.10.062 [95] WANG L, XIA M, ZHOU Y, et al. Gel properties of grass carp myofibrillar protein modified by low-frequency magnetic field during two-stage water bath heating[J]. Food Hydrocolloids,2020,107:105920. doi: 10.1016/j.foodhyd.2020.105920 [96] HAN M, WANG P, XU X, et al. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics[J]. Food Research International,2014,62:1175−1182. doi: 10.1016/j.foodres.2014.05.062 [97] BERTRAM H C, KOHLER A, BOCKER U, et al. Heat-induced changes in myofibrillar protein structures and myowater of two pork qualities: A combined FT-IR spectroscopy and low-field NMR relaxometry study[J]. Journal of Agricultural and Food Chemistry,2006,54(5):1740−1746. doi: 10.1021/jf0514726 [98] NAKASAKO M. Structural characteristics in protein hydration investigated by cryogenic X-ray crystal structure analyses[J]. Journal of BIological Physics,2002,28(2):129−137. doi: 10.1023/A:1019982220615 [99] TINTCHEV F, BINDRICH U, TOEPFL S, et al. High hydrostatic pressure/temperature modeling of frankfurter batters[J]. Meat Science,2013,94(3):376−387. doi: 10.1016/j.meatsci.2013.02.012 [100] 米红波, 王聪, 赵博, 等. 大豆油、亚麻籽油和紫苏籽油对草鱼鱼糜品质的影响[J]. 食品工业科技,2017,38(18):60−64. [MI H B, WANG C, ZHAO B, et al. Effects of soybean, flaxseed and perilla seed oils on the quality of grass carp (Ctenopharyngodon idellus) surimi gels[J]. Science and Technology of Food Industry,2017,38(18):60−64. [101] 王艳霞, 张金丽, 张瑞婷, 等. 鱼种和亲水胶体对鱼糜制品凝胶性质的影响[J]. 食品工业科技,2016,37(2):143−147. [WANG Y X, ZHANG J L, ZHANG R T, et al. Effects of fish species and hydrocolloids on the gel properties of surimi gels[J]. Science and Technology of Food Industry,2016,37(2):143−147. [102] ZHUANG X, HAN M, BAI Y, et al. Insight into the mechanism of myofibrillar protein gel improved by insoluble dietary fiber[J]. Food Hydrocolloids,2018,74:219−226. doi: 10.1016/j.foodhyd.2017.08.015 [103] 朱杰, 孙润广. 原子力显微镜的基本原理及其方法学研究[J]. 生命科学仪器,2005(1):22−26. [ZHU J, SUN R G. Introduction to atomic force microscope and its manipulation[J]. Life Science Instruments,2005(1):22−26. doi: 10.3969/j.issn.1671-7929.2005.01.006 [104] 俞滢洁, 林婷, 杨胜平, 等. 姜黄素结合胡椒碱对冷链物流运输过程中三文鱼保鲜效果的影响[J]. 食品与发酵工业,2021,47(20):152−160. [YU Y J, LIN T, YANG S P, et al. The effect of curcumin combined with piperine on quality of salmon (Salmo salar) in cold chain logistics[J]. Food and Fermentation Industries,2021,47(20):152−160. [105] WANG X, XIONG Y L, SATO H. Rheological enhancement of pork myofibrillar protein-lipid emulsion composite gels via glucose oxidase oxidation/transglutaminase cross-linking pathway[J]. Journal of Agricultural and Food Chemistry,2017,65(38):8451−8458. doi: 10.1021/acs.jafc.7b03007 [106] ZHOU A, CHEN H, ZOU Y, et al. Insight into the mechanism of optimal low-level pressure coupled with heat treatment to improve the gel properties of Nemipterus virgatus surimi combined with water migration[J]. Food Research International,2022,157:111230. doi: 10.1016/j.foodres.2022.111230 [107] GAO R, WANG Y, MU J, et al. Effect of L-histidine on the heat-induced aggregation of bighead carp (Aristichthys nobilis) myosin in low/high ionic strength solution[J]. Food Hydrocolloids,2018,75:174−181. doi: 10.1016/j.foodhyd.2017.08.029