留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

骨胶原蛋白肽纳滤脱盐工艺优化及其对产品整体感官品质的提升作用

李瑞林 郭玉杰 刘济千 张春晖 高宏伟

李瑞林,郭玉杰,刘济千,等. 骨胶原蛋白肽纳滤脱盐工艺优化及其对产品整体感官品质的提升作用[J]. 食品工业科技,2023,44(10):160−167. doi: 10.13386/j.issn1002-0306.2022070068
引用本文: 李瑞林,郭玉杰,刘济千,等. 骨胶原蛋白肽纳滤脱盐工艺优化及其对产品整体感官品质的提升作用[J]. 食品工业科技,2023,44(10):160−167. doi: 10.13386/j.issn1002-0306.2022070068
LI Ruilin, GUO Yujie, LIU Jiqian, et al. Optimization of Nanofiltration Desalination Process of Bone Collagen Peptide and Its Effect on Improving the Overall Sensory Quality of Products[J]. Science and Technology of Food Industry, 2023, 44(10): 160−167. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070068
Citation: LI Ruilin, GUO Yujie, LIU Jiqian, et al. Optimization of Nanofiltration Desalination Process of Bone Collagen Peptide and Its Effect on Improving the Overall Sensory Quality of Products[J]. Science and Technology of Food Industry, 2023, 44(10): 160−167. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070068

骨胶原蛋白肽纳滤脱盐工艺优化及其对产品整体感官品质的提升作用

doi: 10.13386/j.issn1002-0306.2022070068
基金项目: 中国博士后科学基金项目(2021M693902);十四五国家重点研发计划(2021YFD2100804);国家农业科技创新工程项目(CAAS-ASTIP-2022-IFST)。
详细信息
    作者简介:

    李瑞林(1998−),男,硕士研究生,研究方向:畜产品加工,E-mail:lrl225@outlook.com

    通讯作者:

    郭玉杰(1989−)(ORCID:0000−0001−7725−6969),男,博士,助理研究员,研究方向:畜产品加工利用,E-mail:guoyujie@caas.cn

    张春晖(1971−)(ORCID:0000−0002−1411−4047),男,博士,研究员,研究方向:肉品科学,E-mail:dr_zch@163.com

  • 中图分类号: ;TS251.94

Optimization of Nanofiltration Desalination Process of Bone Collagen Peptide and Its Effect on Improving the Overall Sensory Quality of Products

  • 摘要: 为了降低骨胶原蛋白肽灰分含量,并提升骨胶原蛋白肽产品的品质。本文采用纳滤脱盐的方法对灰分进行脱除,通过设计响应面试验对骨胶原蛋白肽纳滤脱盐工艺参数进行优化,并分析纳滤膜处理后样品的理化指标、氨基酸含量、分子量分布、各元素的含量及感官评分的变化。结果表明,骨胶原蛋白肽最优脱盐工艺条件为样品浓度5%,循环次数7次,压力0.5 MPa,此时脱盐率为65.89%±1.25%;纳滤膜处理后样品品质明显提升,但氨基酸含量变化不大;通过分子量分布的测定,发现纳滤脱盐对分子量分布变化影响较小,样品分子量小于3000 Da的组分占比97%,符合食品安全国家标准GB 31645-2018骨胶原蛋白肽的规定;利用ICP-MS对脱盐前后的各元素含量变化进行分析,发现样品中各元素含量均有不同程度的减少,Na、K、P、Mg、Ca等元素含量显著减少(P<0.05);通过感官评价发现经纳滤脱盐的样品颜色变化不大,清澈度提升,咸味明显减弱,整体可接受度提升。本研究将为生产高品质骨胶原蛋白肽产品提供技术支撑。

     

  • 图  不同浓度骨胶原蛋白肽溶液对灰分含量和蛋白得率的影响

    Figure  1.  Effects of different concentrations of collagen peptide solution on ash content and protein yield

    图  不同循环次数对骨胶原蛋白肽灰分含量和蛋白得率的影响

    Figure  2.  Effects of different cycles times on ash content and protein yield of collagen peptide

    图  不同压力对骨胶原蛋白肽灰分含量和蛋白得率的影响

    Figure  3.  Effect of different nanofiltration pressure on ash content and protein yield of collagen peptide

    图  各因素交互作用对骨胶原蛋白肽脱盐综合评分的影响

    Figure  4.  Effects of interaction of various factors on the comprehensive score of bone collagen peptide desalination

    图  脱盐前后骨胶原蛋白肽理化指标

    Figure  5.  Comparison of physicochemical parameters of bone collagen peptide before and after desalination

    图  脱盐前后骨胶原蛋白肽分子量分布

    Figure  6.  Molecular weight distribution of bone collagen peptide before and after desalination

    图  脱盐前后骨胶原蛋白肽感官评价结果

    Figure  7.  Sensory evaluation results of bone collagen peptide before and after desalination

    表  1  响应面试验因素水平表

    Table  1.   Response surface experiment factors and levels

    水平ABC
    样品浓度(%)循环次数(次)纳滤压力(MPa)
    −1460.4
    0570.5
    1680.6
    下载: 导出CSV

    表  2  感官评价标准表

    Table  2.   Sensory evaluation standard table

    感官特性特征描述评分权重(%)
    色泽黄色0~510
    淡黄色6~8
    无色或微黄色9~10
    清澈度溶液浑浊0~520
    溶液清澈6~10
    气味有异味0~520
    无异味6~10
    滋味咸味重0~520
    咸味中等6~8
    无咸味9~10
    整体可接受度不可接受0~530
    可接受6~10
    下载: 导出CSV

    表  3  响应面试验结果

    Table  3.   Results of response surface experiment

    实验号ABC蛋白得率(%)灰分含量(%)综合评分
    1680.589.132.8357.86
    2570.595.372.6561.77
    3580.487.172.6656.54
    4570.596.712.6862.63
    5670.490.512.6558.67
    6570.596.152.762.28
    7480.586.582.6356.16
    8570.595.542.6861.89
    9460.591.742.8159.51
    10560.491.872.7959.59
    11560.688.652.8557.56
    12670.692.552.6759.98
    13470.693.132.5960.32
    14470.492.142.5559.67
    15660.591.322.9759.30
    16580.689.712.7358.19
    17570.594.912.6661.48
    下载: 导出CSV

    表  4  响应面回归模型方差分析

    Table  4.   Response surface regression model ANOVA

    来源平方和SS自由度df均方MSFP显著性
    模型58.6864896.52072114.16910.001037显著
    A0.00261710.0026170.0056860.942002
    B6.50494316.50494314.134810.007078**
    C0.30702510.3070250.6671450.440956*
    AB0.9102910.910291.9780010.202409*
    AC0.1096410.109640.238240.640397
    BC3.37866413.3786647.3416160.030219*
    A24.70182914.70182910.216760.015142*
    B231.7807131.780769.057387.14E-05**
    C27.05176417.05176415.323020.00579**
    残差3.2214570.460207
    失拟度2.40191330.8006383.9077530.11051不显著
    纯误差0.81953840.204884
    总和61.9079416
    注:*表示P<0.05;**表示P<0.01。
    下载: 导出CSV

    表  5  脱盐前后骨胶原蛋白肽元素含量(mg/kg)

    Table  5.   Element composition of bone collagen peptide powder before and after desalination (mg/kg)

    元素种类脱盐前脱盐后元素
    种类
    脱盐前脱盐后
    B6.60±0.20a1.76±0.64bCu0.28±0.28a0.12±0.01a
    Na12171.28±191.47a4557.44±3.36bZn1.93±0.01a1.11±0.10a
    Mg714.32±10.81a340.65±0.40bAs0.17±0.02a0.02±0.00a
    Al8.95±0.73a4.65±0.39bSe0.24±0.24a0.02±0.01a
    K3561.36±98.42a489.75±7.10bSr44.22±0.03a4.72±0.19b
    Ca2609.93±24.09a1770.14±12.40bMo0.35±0.06a0.17±0.01a
    P3513.60±77.69a1211.12±17.12bCdNDND
    Cr0.08±0.01a0.07±0.01aSn2.97±0.09a2.80±0.01a
    Mn7.23±0.05a5.72±0.01bBa2.33±0.01a0.41±0.01b
    Fe21.34±0.07a21.21±0.07aHgNDND
    Co0.21±0.01a0.09±0.01aPb0.15±0.01a0.08±0.03a
    注:ND表示未检出;不同的小写字母表示有显著性差异(P<0.05)。
    下载: 导出CSV
  • [1] 李婉君. 畜禽骨副产物高值化加工关键技术与装备——中国农业科学院农产品加工所张春晖研究员专访[J]. 肉类研究,2018,32(4):15−18, 12−14. [LI W J. Key technologies and equipment for high-value processing of livestock and poultry bone by-products-an exclusive interview with researcher zhangchunhui of Institute of agricultural products processing, Chinese Academy of Agricultural Sciences[J]. Meat Research,2018,32(4):15−18, 12−14.
    [2] LIU Y W, MA D H, WANG Y H, et al. A comparative study of the properties and self-aggregation behavior of collagens from the scales and skin of grass carp (Ctenopharyngodon idella)[J]. Int J Biol Macromol,2018,106:516−522. doi: 10.1016/j.ijbiomac.2017.08.044
    [3] AHMED M, VERMA A K, PATEL R. Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review[J]. Sustainable Chemistry and Pharmacy, 2020, 18.
    [4] 陈永凯, 郭玉杰, 张鸿儒, 等. 促成骨细胞增殖活性骨胶原蛋白肽的靶向筛选及活性分析[J]. 食品科学,2022,43(13):1−7. [CHENG Y K, GUO Y J, ZHANG H R, et al. Targeted screening and activity analysis of bone collagen peptides with osteoblasts proliferation promoting activities[J]. Food Science,2022,43(13):1−7. doi: 10.7506/spkx1002-6630-20210327-339
    [5] 魏洁琼, 余群力, 韩玲, 等. 牛骨胶原蛋白肽制备工艺优化及抗氧化活性分析[J]. 甘肃农业大学学报,2020,55(5):203−211, 218. [WEI J Q, YU Q L, HAN L, et al. Optimization of preparation process and antioxidant activity analysis of bovine bone collagen peptide[J]. Journal of Gansu Agricultural University,2020,55(5):203−211, 218. doi: 10.13432/j.cnki.jgsau.2020.05.024
    [6] 陶鑫, 脱盐低水解度蛋清肽粉制备及其功能性质研究[D]. 武汉: 武汉轻工大学, 2019

    TAO X. Preparation and Functional properties of desalted low-hydrolysis egg white peptide powder[D]. Wuhan: Wuhan Polytechnic University, 2019.
    [7] ZAREI F, MOATTARI R M, RAJABZADEH S, et al. Preparation of thin film composite nano-filtration membranes for brackish water softening based on the reaction between functionalized UF membranes and polyethyleneimine[J]. Journal of Membrane Science, 2019: 588.
    [8] MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination,2015,356:226−254. doi: 10.1016/j.desal.2014.10.043
    [9] 宋齐. 纳滤膜在乳清脱盐中的应用研究[D]. 北京: 北京化工大学, 2010

    SONG Q. Application of nanofiltration membrane on whey demineralization[D]. Beijing: Beijing University of Chemical Technology, 2010.
    [10] TIAN B, HU P, ZHAO S, et al. Nanofiltration membrane combining environmental-friendly polycarboxylic interlayer prepared from catechol for enhanced desalination performance[J]. Desalination, 2021, 512.
    [11] 鉏晓艳, 熊光权, 李新, 等. 草鱼鱼鳞酶溶性胶原蛋白肽脱腥脱苦工艺研究[J]. 食品工业科技,2014,35(15):232−235. [CHU X Y, XIONG G Q, LI X, et al. Study on debittering of papain soluble collagen peptide from grass carp scale[J]. Science and Technology of Food Industry,2014,35(15):232−235.
    [12] 李福后, 黄岳磊, 刘小芳, 等. 正交实验优化南极磷虾蛋白肽的纳滤脱盐工艺[J]. 渔业科学进展, 2023, 44(1): 228-235.

    LI F H, HUANG Y L, LIU X F, et al. Optimization of a nanofiltration desalination process for antarctic krill peptides using orthogonal tests[J]. Progress in Fishery Sciences, 2023, 44(1): 228-235.
    [13] ROMAN A J, WANG M, CSANADI J, et al. Partial demineralization and concentration of acid whey by nanofiltration combined with diafiltration[J]. Desalination,2009,241(1−3):288−295. doi: 10.1016/j.desal.2007.12.054
    [14] 国家卫生和计划生育委员会. GB5009.4-2016食品安全国家标准食品中灰分的测定[S]. 北京: 中国标准出版社, 2016: 1−3

    National Health and Family Planning Commission. National Standard for Food Safety. GB5009.4-2016 Determination of ash in food[S]. Beijing: China Standards Press, 2016: 1−3.
    [15] 叶孟亮. 牦牛骨胶原蛋白肽抗骨质疏松作用机制研究[D]. 北京: 中国农业科学院, 2019

    YE M L. Study on the underlying mechanism of anti-osteoporosis of yak(Bos grunniens) bone collagen peptides[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
    [16] MI S, SHANG K, JIA W, et al. Characterization and authentication of Taihe black-boned silky fowl (Gallus gallus domesticus Brisson) muscles based on mineral profiling using ICP-MS[J]. Microchemical Journal,2019,144:26−32. doi: 10.1016/j.microc.2018.08.027
    [17] 国家卫生和计划生育委员会. GB 31645-2018食品安全国家标准胶原蛋白肽[S]. 北京: 中国标准出版社, 2018. [National Health and Family Planning Commission. GB 31645-2018 National standard for food safety. Collagen peptides[S]. Beijing: China Standards Press, 2018]
    [18] 轩瑞瑞. 基于熵权法和灰色关联度法的鲜食糯玉米品质评价[J]. 食品工业科技,2021,42(14):241−248. [XUAN R R. Quality evaluation of different varieties of fresh-edible waxy corns based on entropy weight method and grey interconnect degree analysis[J]. Science and Technology of Food Industry,2021,42(14):241−248. doi: 10.13386/j.issn1002-0306.2020090072
    [19] 岳三峰, 纳滤过程浓差极化行为的CFD模拟与影响因素研究[D]. 哈尔滨: 哈尔滨工业大学2018

    YUE S F, Simulation for nanofiltration concentration polarization and its influential factors[D]. Harbin: Harbin Institute of Technology, 2018.
    [20] 刘亮, 刘良忠, 王燕, 等. 超滤纳滤在鲟鱼皮胶原蛋白肽精制中的应用[J]. 武汉工业学院学报,2013,32(2):6−10. [LIU L, LIU L Z, WANG Y, et al. Application of refining in sturgeon skin collagen peptide by ultrafiltration and nanofiltration[J]. Journal of Wuhan Polytechnic University,2013,32(2):6−10.
    [21] 宋玉军, 孙本惠. 影响纳滤膜分离性能的因素分析[J]. 水处理技术,1997(2):18−22. [SONG Y J, SUN B H. Study of factors affecting separation performance of nanofiltration membrane[J]. Technology of Water Treatment,1997(2):18−22.
    [22] 王海龙, 王晓愚, 高庆国, 等. 影响纳滤膜分离性能的因素研究综述[J]. 新疆环境保护,2018,40(3):20−23. [WANG H L, WANG X Y, GAO Q G, et al. Research summary of the factors affecting the separation performance of nanofiltration membrane[J]. Environmental Protection of Xinjiang,2018,40(3):20−23. doi: 10.3969/j.issn.1008-2301.2018.03.005
    [23] 刘同方, 沈起兵, 张翼飞, 等. 11种市售胶原蛋白肽产品氨基酸组成及营养评价[J]. 食品工业,2022,43(4):338−342. [LIU T F, SHEN Q B, ZHANG Y F, et al. Composition comparison and nutritional evaluation of amino acids in 11 commercially available collagen peptides[J]. The Food Industry,2022,43(4):338−342.
    [24] 罗蓓蓓. 耐溶剂纳滤膜在天然活性成份分离中的应用研究[D]. 北京: 北京化工大学, 2013

    LUO B B. Application of solvent resistant nanofiltraion for separation of natural bioactive compounds[D]. Beijing: Beijing University of Chemical Technology, 2013.
    [25] 余小月, 赵钰, 李金玲, 等. 胶原蛋白的结构和消化吸收特性及营养价值评价进展[J]. 食品工业科技,2021,42(13):386−394. [YU X Y, ZHAO Y, LI J L, et al. Assessment of the structure, digestion absorption properties and nutritive value of collagen peptide[J]. Science and Technology of Food Industry,2021,42(13):386−394.
    [26] 贾伟. 牛骨营养品质评价与牦牛骨胶原蛋白肽功效研究[D]. 兰州: 甘肃农业大学, 2017

    JIA W. The study of bovine bone nutritional quality assessment and yak (Bos grunniens)bone collagen peptide function[D]. Lanzhou: Gansu Agricultural University, 2017.
    [27] 蔡路昀, 冷利萍, 李秀霞, 等. 草鱼鱼皮不同分子量肽段体外抗氧化性能的研究[J]. 食品工业科技,2017,38(12):58−64. [CAI L Y, LENG L P, LI X X, et al. Evaluation of the in vitro antioxidant properties of different molecular weight peptide fractions from grass carp (Ctenopharyngodon idella) skin[J]. Science and Technology of Food Industry,2017,38(12):58−64.
    [28] ZHANG H, ZHAO L, SHEN Q, et al. Preparation of cattle bone collagen peptides-calcium chelate and its structural characterization and stability[J]. LWT,2021,144(1).
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  28
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-08
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回