Optimization of Nanofiltration Desalination Process of Bone Collagen Peptide and Its Effect on Improving the Overall Sensory Quality of Products
-
摘要: 为了降低骨胶原蛋白肽灰分含量,并提升骨胶原蛋白肽产品的品质。本文采用纳滤脱盐的方法对灰分进行脱除,通过设计响应面试验对骨胶原蛋白肽纳滤脱盐工艺参数进行优化,并分析纳滤膜处理后样品的理化指标、氨基酸含量、分子量分布、各元素的含量及感官评分的变化。结果表明,骨胶原蛋白肽最优脱盐工艺条件为样品浓度5%,循环次数7次,压力0.5 MPa,此时脱盐率为65.89%±1.25%;纳滤膜处理后样品品质明显提升,但氨基酸含量变化不大;通过分子量分布的测定,发现纳滤脱盐对分子量分布变化影响较小,样品分子量小于3000 Da的组分占比97%,符合食品安全国家标准GB 31645-2018骨胶原蛋白肽的规定;利用ICP-MS对脱盐前后的各元素含量变化进行分析,发现样品中各元素含量均有不同程度的减少,Na、K、P、Mg、Ca等元素含量显著减少(P<0.05);通过感官评价发现经纳滤脱盐的样品颜色变化不大,清澈度提升,咸味明显减弱,整体可接受度提升。本研究将为生产高品质骨胶原蛋白肽产品提供技术支撑。Abstract: To reduce the ash content of bone collagen peptide and improve the quality of bone collagen peptide products. In this paper, the method of nanofiltration desalination was used to remove ash. The process parameters for nanofiltration desalination of bone collagen peptides were optimized through design response tests. The changes in physical and chemical indicators, amino acid content, molecular weight distribution, content of various elements, and sensory scores of samples treated with nanofiltration membranes were analyzed. Results showed that, the optimal desalination process conditions were sample concentration of 5%, cycle times of 7 times and pressure of 0.5 MPa. Under this condition, the desalination rate was 65.89%±1.25%. After nanofiltration membrane treatment, the quality of the sample was significantly improved, but the amino acid content did not change much. Through the measurement of molecular weight distribution, it was found that nanofiltration desalination had little impact on the change of molecular weight distribution, the components with molecular weight less than 3000 Da accounted for 97%, which was in line with the provisions of the national food safety standard GB 31645-2018 bone collagen peptides. ICP-MS was used to analyze the changes in the content of various elements before and after desalination, and it was found that the content of various elements in the sample decreased to varying degrees, the content of Na, K, P, Mg, Ca decreased significantly (P<0.05). Through sensory evaluation, it was found that the color of the samples did not change while the clarity increased, the saltiness decreased significantly, the overall acceptability increased. This study would provide technical support for the production of high-quality bone collagen peptide products.
-
Key words:
- bone collagen peptide /
- nanofiltration /
- desalting /
- protein yield /
- ash content /
- sensory quality
-
表 1 响应面试验因素水平表
Table 1. Response surface experiment factors and levels
水平 A B C 样品浓度(%) 循环次数(次) 纳滤压力(MPa) −1 4 6 0.4 0 5 7 0.5 1 6 8 0.6 表 2 感官评价标准表
Table 2. Sensory evaluation standard table
感官特性 特征描述 评分 权重(%) 色泽 黄色 0~5 10 淡黄色 6~8 无色或微黄色 9~10 清澈度 溶液浑浊 0~5 20 溶液清澈 6~10 气味 有异味 0~5 20 无异味 6~10 滋味 咸味重 0~5 20 咸味中等 6~8 无咸味 9~10 整体可接受度 不可接受 0~5 30 可接受 6~10 表 3 响应面试验结果
Table 3. Results of response surface experiment
实验号 A B C 蛋白得率(%) 灰分含量(%) 综合评分 1 6 8 0.5 89.13 2.83 57.86 2 5 7 0.5 95.37 2.65 61.77 3 5 8 0.4 87.17 2.66 56.54 4 5 7 0.5 96.71 2.68 62.63 5 6 7 0.4 90.51 2.65 58.67 6 5 7 0.5 96.15 2.7 62.28 7 4 8 0.5 86.58 2.63 56.16 8 5 7 0.5 95.54 2.68 61.89 9 4 6 0.5 91.74 2.81 59.51 10 5 6 0.4 91.87 2.79 59.59 11 5 6 0.6 88.65 2.85 57.56 12 6 7 0.6 92.55 2.67 59.98 13 4 7 0.6 93.13 2.59 60.32 14 4 7 0.4 92.14 2.55 59.67 15 6 6 0.5 91.32 2.97 59.30 16 5 8 0.6 89.71 2.73 58.19 17 5 7 0.5 94.91 2.66 61.48 表 4 响应面回归模型方差分析
Table 4. Response surface regression model ANOVA
来源 平方和SS 自由度df 均方MS F值 P值 显著性 模型 58.68648 9 6.520721 14.1691 0.001037 显著 A 0.002617 1 0.002617 0.005686 0.942002 B 6.504943 1 6.504943 14.13481 0.007078 ** C 0.307025 1 0.307025 0.667145 0.440956 * AB 0.91029 1 0.91029 1.978001 0.202409 * AC 0.10964 1 0.10964 0.23824 0.640397 BC 3.378664 1 3.378664 7.341616 0.030219 * A2 4.701829 1 4.701829 10.21676 0.015142 * B2 31.7807 1 31.7807 69.05738 7.14E-05 ** C2 7.051764 1 7.051764 15.32302 0.00579 ** 残差 3.22145 7 0.460207 失拟度 2.401913 3 0.800638 3.907753 0.11051 不显著 纯误差 0.819538 4 0.204884 总和 61.90794 16 注:*表示P<0.05;**表示P<0.01。 表 5 脱盐前后骨胶原蛋白肽元素含量(mg/kg)
Table 5. Element composition of bone collagen peptide powder before and after desalination (mg/kg)
元素种类 脱盐前 脱盐后 元素
种类脱盐前 脱盐后 B 6.60±0.20a 1.76±0.64b Cu 0.28±0.28a 0.12±0.01a Na 12171.28±191.47a 4557.44±3.36b Zn 1.93±0.01a 1.11±0.10a Mg 714.32±10.81a 340.65±0.40b As 0.17±0.02a 0.02±0.00a Al 8.95±0.73a 4.65±0.39b Se 0.24±0.24a 0.02±0.01a K 3561.36±98.42a 489.75±7.10b Sr 44.22±0.03a 4.72±0.19b Ca 2609.93±24.09a 1770.14±12.40b Mo 0.35±0.06a 0.17±0.01a P 3513.60±77.69a 1211.12±17.12b Cd ND ND Cr 0.08±0.01a 0.07±0.01a Sn 2.97±0.09a 2.80±0.01a Mn 7.23±0.05a 5.72±0.01b Ba 2.33±0.01a 0.41±0.01b Fe 21.34±0.07a 21.21±0.07a Hg ND ND Co 0.21±0.01a 0.09±0.01a Pb 0.15±0.01a 0.08±0.03a 注:ND表示未检出;不同的小写字母表示有显著性差异(P<0.05)。 -
[1] 李婉君. 畜禽骨副产物高值化加工关键技术与装备——中国农业科学院农产品加工所张春晖研究员专访[J]. 肉类研究,2018,32(4):15−18, 12−14. [LI W J. Key technologies and equipment for high-value processing of livestock and poultry bone by-products-an exclusive interview with researcher zhangchunhui of Institute of agricultural products processing, Chinese Academy of Agricultural Sciences[J]. Meat Research,2018,32(4):15−18, 12−14. [2] LIU Y W, MA D H, WANG Y H, et al. A comparative study of the properties and self-aggregation behavior of collagens from the scales and skin of grass carp (Ctenopharyngodon idella)[J]. Int J Biol Macromol,2018,106:516−522. doi: 10.1016/j.ijbiomac.2017.08.044 [3] AHMED M, VERMA A K, PATEL R. Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review[J]. Sustainable Chemistry and Pharmacy, 2020, 18. [4] 陈永凯, 郭玉杰, 张鸿儒, 等. 促成骨细胞增殖活性骨胶原蛋白肽的靶向筛选及活性分析[J]. 食品科学,2022,43(13):1−7. [CHENG Y K, GUO Y J, ZHANG H R, et al. Targeted screening and activity analysis of bone collagen peptides with osteoblasts proliferation promoting activities[J]. Food Science,2022,43(13):1−7. doi: 10.7506/spkx1002-6630-20210327-339 [5] 魏洁琼, 余群力, 韩玲, 等. 牛骨胶原蛋白肽制备工艺优化及抗氧化活性分析[J]. 甘肃农业大学学报,2020,55(5):203−211, 218. [WEI J Q, YU Q L, HAN L, et al. Optimization of preparation process and antioxidant activity analysis of bovine bone collagen peptide[J]. Journal of Gansu Agricultural University,2020,55(5):203−211, 218. doi: 10.13432/j.cnki.jgsau.2020.05.024 [6] 陶鑫, 脱盐低水解度蛋清肽粉制备及其功能性质研究[D]. 武汉: 武汉轻工大学, 2019TAO X. Preparation and Functional properties of desalted low-hydrolysis egg white peptide powder[D]. Wuhan: Wuhan Polytechnic University, 2019. [7] ZAREI F, MOATTARI R M, RAJABZADEH S, et al. Preparation of thin film composite nano-filtration membranes for brackish water softening based on the reaction between functionalized UF membranes and polyethyleneimine[J]. Journal of Membrane Science, 2019: 588. [8] MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination,2015,356:226−254. doi: 10.1016/j.desal.2014.10.043 [9] 宋齐. 纳滤膜在乳清脱盐中的应用研究[D]. 北京: 北京化工大学, 2010SONG Q. Application of nanofiltration membrane on whey demineralization[D]. Beijing: Beijing University of Chemical Technology, 2010. [10] TIAN B, HU P, ZHAO S, et al. Nanofiltration membrane combining environmental-friendly polycarboxylic interlayer prepared from catechol for enhanced desalination performance[J]. Desalination, 2021, 512. [11] 鉏晓艳, 熊光权, 李新, 等. 草鱼鱼鳞酶溶性胶原蛋白肽脱腥脱苦工艺研究[J]. 食品工业科技,2014,35(15):232−235. [CHU X Y, XIONG G Q, LI X, et al. Study on debittering of papain soluble collagen peptide from grass carp scale[J]. Science and Technology of Food Industry,2014,35(15):232−235. [12] 李福后, 黄岳磊, 刘小芳, 等. 正交实验优化南极磷虾蛋白肽的纳滤脱盐工艺[J]. 渔业科学进展, 2023, 44(1): 228-235.LI F H, HUANG Y L, LIU X F, et al. Optimization of a nanofiltration desalination process for antarctic krill peptides using orthogonal tests[J]. Progress in Fishery Sciences, 2023, 44(1): 228-235. [13] ROMAN A J, WANG M, CSANADI J, et al. Partial demineralization and concentration of acid whey by nanofiltration combined with diafiltration[J]. Desalination,2009,241(1−3):288−295. doi: 10.1016/j.desal.2007.12.054 [14] 国家卫生和计划生育委员会. GB5009.4-2016食品安全国家标准食品中灰分的测定[S]. 北京: 中国标准出版社, 2016: 1−3National Health and Family Planning Commission. National Standard for Food Safety. GB5009.4-2016 Determination of ash in food[S]. Beijing: China Standards Press, 2016: 1−3. [15] 叶孟亮. 牦牛骨胶原蛋白肽抗骨质疏松作用机制研究[D]. 北京: 中国农业科学院, 2019YE M L. Study on the underlying mechanism of anti-osteoporosis of yak(Bos grunniens) bone collagen peptides[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. [16] MI S, SHANG K, JIA W, et al. Characterization and authentication of Taihe black-boned silky fowl (Gallus gallus domesticus Brisson) muscles based on mineral profiling using ICP-MS[J]. Microchemical Journal,2019,144:26−32. doi: 10.1016/j.microc.2018.08.027 [17] 国家卫生和计划生育委员会. GB 31645-2018食品安全国家标准胶原蛋白肽[S]. 北京: 中国标准出版社, 2018. [National Health and Family Planning Commission. GB 31645-2018 National standard for food safety. Collagen peptides[S]. Beijing: China Standards Press, 2018] [18] 轩瑞瑞. 基于熵权法和灰色关联度法的鲜食糯玉米品质评价[J]. 食品工业科技,2021,42(14):241−248. [XUAN R R. Quality evaluation of different varieties of fresh-edible waxy corns based on entropy weight method and grey interconnect degree analysis[J]. Science and Technology of Food Industry,2021,42(14):241−248. doi: 10.13386/j.issn1002-0306.2020090072 [19] 岳三峰, 纳滤过程浓差极化行为的CFD模拟与影响因素研究[D]. 哈尔滨: 哈尔滨工业大学2018YUE S F, Simulation for nanofiltration concentration polarization and its influential factors[D]. Harbin: Harbin Institute of Technology, 2018. [20] 刘亮, 刘良忠, 王燕, 等. 超滤纳滤在鲟鱼皮胶原蛋白肽精制中的应用[J]. 武汉工业学院学报,2013,32(2):6−10. [LIU L, LIU L Z, WANG Y, et al. Application of refining in sturgeon skin collagen peptide by ultrafiltration and nanofiltration[J]. Journal of Wuhan Polytechnic University,2013,32(2):6−10. [21] 宋玉军, 孙本惠. 影响纳滤膜分离性能的因素分析[J]. 水处理技术,1997(2):18−22. [SONG Y J, SUN B H. Study of factors affecting separation performance of nanofiltration membrane[J]. Technology of Water Treatment,1997(2):18−22. [22] 王海龙, 王晓愚, 高庆国, 等. 影响纳滤膜分离性能的因素研究综述[J]. 新疆环境保护,2018,40(3):20−23. [WANG H L, WANG X Y, GAO Q G, et al. Research summary of the factors affecting the separation performance of nanofiltration membrane[J]. Environmental Protection of Xinjiang,2018,40(3):20−23. doi: 10.3969/j.issn.1008-2301.2018.03.005 [23] 刘同方, 沈起兵, 张翼飞, 等. 11种市售胶原蛋白肽产品氨基酸组成及营养评价[J]. 食品工业,2022,43(4):338−342. [LIU T F, SHEN Q B, ZHANG Y F, et al. Composition comparison and nutritional evaluation of amino acids in 11 commercially available collagen peptides[J]. The Food Industry,2022,43(4):338−342. [24] 罗蓓蓓. 耐溶剂纳滤膜在天然活性成份分离中的应用研究[D]. 北京: 北京化工大学, 2013LUO B B. Application of solvent resistant nanofiltraion for separation of natural bioactive compounds[D]. Beijing: Beijing University of Chemical Technology, 2013. [25] 余小月, 赵钰, 李金玲, 等. 胶原蛋白的结构和消化吸收特性及营养价值评价进展[J]. 食品工业科技,2021,42(13):386−394. [YU X Y, ZHAO Y, LI J L, et al. Assessment of the structure, digestion absorption properties and nutritive value of collagen peptide[J]. Science and Technology of Food Industry,2021,42(13):386−394. [26] 贾伟. 牛骨营养品质评价与牦牛骨胶原蛋白肽功效研究[D]. 兰州: 甘肃农业大学, 2017JIA W. The study of bovine bone nutritional quality assessment and yak (Bos grunniens)bone collagen peptide function[D]. Lanzhou: Gansu Agricultural University, 2017. [27] 蔡路昀, 冷利萍, 李秀霞, 等. 草鱼鱼皮不同分子量肽段体外抗氧化性能的研究[J]. 食品工业科技,2017,38(12):58−64. [CAI L Y, LENG L P, LI X X, et al. Evaluation of the in vitro antioxidant properties of different molecular weight peptide fractions from grass carp (Ctenopharyngodon idella) skin[J]. Science and Technology of Food Industry,2017,38(12):58−64. [28] ZHANG H, ZHAO L, SHEN Q, et al. Preparation of cattle bone collagen peptides-calcium chelate and its structural characterization and stability[J]. LWT,2021,144(1).