留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三种果汁的抗氧化活性及其对结肠细胞NCM460氧化损伤的保护作用比较

周婷 吴雪莉 李星洁 唐克纯 武首薰 黄孝懿 康宇鸿 夏锐 王礼群 阴文娅

周婷,吴雪莉,李星洁,等. 三种果汁的抗氧化活性及其对结肠细胞NCM460氧化损伤的保护作用比较[J]. 食品工业科技,2023,44(10):353−361. doi: 10.13386/j.issn1002-0306.2022070108
引用本文: 周婷,吴雪莉,李星洁,等. 三种果汁的抗氧化活性及其对结肠细胞NCM460氧化损伤的保护作用比较[J]. 食品工业科技,2023,44(10):353−361. doi: 10.13386/j.issn1002-0306.2022070108
ZHOU Ting, WU Xueli, LI Xingjie, et al. Comparison of Antioxidant Activities of Three Kinds of Juices and Their Protective Effects on Oxidative Damage of Colon Cell NCM460[J]. Science and Technology of Food Industry, 2023, 44(10): 353−361. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070108
Citation: ZHOU Ting, WU Xueli, LI Xingjie, et al. Comparison of Antioxidant Activities of Three Kinds of Juices and Their Protective Effects on Oxidative Damage of Colon Cell NCM460[J]. Science and Technology of Food Industry, 2023, 44(10): 353−361. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070108

三种果汁的抗氧化活性及其对结肠细胞NCM460氧化损伤的保护作用比较

doi: 10.13386/j.issn1002-0306.2022070108
基金项目: 四川省自然科学基金(2022NSFSC0587)。
详细信息
    作者简介:

    周婷(1998−)(ORCID:0000−0002−9045−0456),女,硕士研究生,研究方向:营养与健康,E-mail:2267924369@qq.com

    通讯作者:

    阴文娅(1972−)(ORCID:0000−0001−7698−6871),女,博士,副教授,研究方向:营养与疾病,E-mail:yinwenya@scu.edu.cn

  • 中图分类号: R151.3

Comparison of Antioxidant Activities of Three Kinds of Juices and Their Protective Effects on Oxidative Damage of Colon Cell NCM460

  • 摘要: 比较刺梨汁(Rosa roxburghii Tratt juice,RRTJ)、石榴汁(Pomegranate juice,PJ)以及蓝莓汁(Blueberry juice,BJ)的活性成分含量以及抗氧化活性,探究三种果汁对葡聚糖硫酸钠盐(Dextran sulfate sodium,DSS)诱导人正常结肠上皮细胞NCM460氧化损伤的保护作用。结果表明,三种果汁中共同含有的生物活性成分有28种,其中刺梨汁的总多酚、总黄酮含量显著高于石榴汁和蓝莓汁(P<0.05),分别为22.77和12.04 mg/mL;同时,刺梨汁对ABTS+·、DPPH·的清除能力显著高于石榴汁和蓝莓汁(P<0.05),半数清除率(Half scavenging rate,IC50)分别为4.00±0.32和10.03±0.51 μL/mL;Pearson相关性分析表明果汁的总多酚含量与ABTS+·清除能力呈正相关(P<0.05)。此外,刺梨汁缓解DSS诱导NCM460细胞氧化损伤的能力最强,2 μL/mL刺梨汁即能使氧化损伤的NCM460细胞活力恢复到与对照组相当的水平,降低DSS引起的细胞中活性氧(Reactive oxygen species,ROS)水平。实验表明果汁中的总多酚含量与抗氧化能力呈正相关;刺梨汁的总多酚和总黄酮含量高于蓝莓汁和石榴汁,抗氧化活性和缓解DSS诱导NCM460细胞氧化损伤的能力最强,具有深入研究开发的潜力。

     

  • 图  三种果汁的总多酚和总黄酮含量

    注:不同果汁(RRTJ:刺梨汁;PJ:石榴汁;BJ:蓝莓汁)同一指标标不同小写字母表示具有显著性差异(P<0.05);表3同。

    Figure  1.  Total polyphenol and total flavonoid contents of three kinds of fruit juices

    图  三种果汁对ABTS+·、DPPH·、·OH的清除率

    Figure  2.  Scavenging rate of ABTS+·, DPPH·, ·OH of three kinds of fruit juices

    图  DSS对NCM460细胞存活率的影响

    注:*表示与对照相比存在显著性差异,P<0.05;**表示与对照相比存在极显著性差异,P<0.01;图4同。

    Figure  3.  Effect of DSS on the survival rate of NCM460 cells

    图  三种果汁对NCM460细胞存活率的影响

    Figure  4.  Effects of three kinds of juices on the survival rate of NCM460 cells

    图  三种果汁对NCM460细胞氧化损伤的保护作用

    注:#表示与对照组相比具有显著性差异(P<0.05),##表示与对照组相比具有极显著性差异(P<0.01);*表示与DSS组相比具有显著性差异(P<0.05),**表示与DSS组相比具有极显著性差异(P<0.01);图6同。

    Figure  5.  Protective effects of three kinds of fruit juices on oxidative damage in NCM460 cells

    图  三种果汁对NCM460细胞内ROS水平的影响

    Figure  6.  Effects of three fruit juices on ROS levels in NCM460 cells

    表  1  梯度洗脱程序

    Table  1.   Gradient elution procedure

    序号时间A相(%)B相(%)
    10955
    227030
    353070
    471090
    581090
    68.1955
    710955
    下载: 导出CSV

    表  2  三种果汁中的活性成分

    Table  2.   Active ingredients in three kinds of fruit juices

    序号分类化合物分子式分子量保留时间(min)质荷比(m/z)模式峰面积比:RRTJ/RRTJ峰面积比:PJ/RRTJ峰面积比:BJ/RRTJ
    1酚酸儿茶素C15H14O6290.078964.557289.0718[M-H]10.01853810.0047719
    2酚酸对香豆酸C9H8O3164.047274.627163.0401[M-H]10.35468400.0243441
    3酚酸异香草酸C8H8O4168.042243.102170.0964[M+H]+121.187664118.9522201
    4酚酸咖啡酸C9H8O4180.042263.793179.0349[M-H]10.94396709.4652850
    5酚酸阿魏酸C10H10O4194.057835.681193.0870[M-H]11.677790447.0191357
    6酚酸芥子酸C11H12O5224.068444.527225.1495[M+H]+111.227866142.189311
    7酚酸鞣花酸C14H6O8302.006185.593303.0133[M+H]+10.19973690.0140473
    8酚酸对香豆酰奎尼酸C16H18O8338.100264.889337.0930[M-H]10.05882021.5330073
    9酚酸新绿原酸C16H18O9354.094943.74353.0879[M-H]10.00363700.5928340
    10酚酸表儿茶素C15H14O6290.078934.953289.0718[M-H]10.06416520.0731626
    11黄酮类紫云英苷C21H20O11448.10044.401447.0569[M-H]10.00217140.0020716
    12黄酮类芦丁C27H30O16610.15365.657609.1976[M-H]10.395808056.4030733
    13黄酮类染料木苷C21H20O10432.105644.756433.1677[M+H]+1372.12627143.4947074
    14生物碱葫芦巴碱C7 H7NO2105.021360.827136.8267[M-H]135.95512811.2682148
    15有机酸富马酸C4H4 O4116.010810.879115.0039[M-H]10.20962780.0881666
    16有机酸衣康酸C5 H6 O4130.02660.948129.0192[M-H]11.038479091.2074671
    17有机酸DL-苹果酸C4H6O5134.021491.061133.0143[M-H]10.71833950.1855467
    18有机酸反乌头酸C6 H6 O6174.016420.912173.0095[M-H]11.57483531.8560623
    19有机酸维生素CC6 H8 O6174.016361.49175.0247[M-H]10.42087210.6294469
    20有机酸柠檬酸C6 H8 O7192.06331.278191.0197[M-H]10.17416080.6592146
    21有机酸奎宁酸C7 H12 O6192.063410.832191.0560[M-H]10.07988378.4139563
    22有机酸脱落酸C15 H20 O4264.136287.092265.1047[M+H]+10.38799905.3032785
    23糖苷长寿花糖甙C19 H30 O8386.194055.108385.1862[M-H]10.14442650.7048008
    24氨基酸赖氨酸C6 H14N2O2146.105490.695145.0983[M-H]117.39110494.8403282
    25氨基酸組氨酸C6 H9 N3 O2155.069440.703154.4484[M-H]115.70360294.4824619
    26氨基酸L-酪氨酸C9 H11 N O3181.073891.294163.0400[M-H]18.35619171.5198959
    27氨基酸DL-精氨酸C6H14N4O2174.111540.715173.0093[M-H]15.333629652.6650510
    28氨基酸异亮氨酸C6H13NO2131.094611.379130.0876[M-H]11.54813780.8577223
    下载: 导出CSV

    表  3  三种果汁抗氧化活性的IC50

    Table  3.   IC50 of antioxidant activity of three kinds of fruit juices

    IC50(μL/mL)RRTJPJBJ
    ABTS+·4.00±0.32b40.74±0.72a39.37±0.74a
    DPPH·10.03±0.51c362.77±71.48b840.43±73.57a
    ·OH5.92±0.46b19.79±0.85a5.67±0.82b
    下载: 导出CSV

    表  4  活性成分含量与抗氧化之间的相关性

    Table  4.   Correlation between active ingredient content and antioxidation

    r总多酚总黄酮IC50 of ABTS+·IC50 of DPPH·IC50 of ·OH
    总多酚1.000
    总黄酮0.9941.000
    IC50 of ABTS+·−0.999*−0.9881.000
    IC50 of DPPH·−0.769−0.6970.8001.000
    IC50 of ·OH−0.558−0.6420.512−0.1021.000
    注:*表示存在显著性,P<0.05。
    下载: 导出CSV
  • [1] LIU P, LI Y, WANG R, et al. Oxidative stress and antioxidant nanotherapeutic approaches for inflammatory bowel disease[J]. Biomedicines,2021,10(1):85. doi: 10.3390/biomedicines10010085
    [2] LIGUORI I, RUSSO G, CURCIO F, et al. Oxidative stress, aging, and diseases[J]. Clinical Interventions in Aging,2018,13:757−772. doi: 10.2147/CIA.S158513
    [3] SIES H, JONES D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nature Reviews Molecular Cell Biology,2020,21(7):363−383. doi: 10.1038/s41580-020-0230-3
    [4] ALATAB S, SEPANLOU S G, IKUTA K, et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017[J]. The Lancet Gastroenterology & Hepatology,2020,5(1):17−30.
    [5] GEICU O I, STANCA L, VOICU S N, et al. Dietary AGEs involvement in colonic inflammation and cancer: Insights from an in vitro enterocyte model[J]. Scientific Reports,2020,10(1):2754. doi: 10.1038/s41598-020-59623-x
    [6] RUDRAPAL M, KHAIRNAR S J, KHAN J, et al. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action[J]. Front Pharmacol,2022,13:806470. doi: 10.3389/fphar.2022.806470
    [7] ZHOU G, CHEN L, SUN Q, et al. Maqui berry exhibited therapeutic effects against DSS-induced ulcerative colitis in C57BL/6 mice[J]. Food Function,2019,10(10):6655−6665. doi: 10.1039/C9FO00663J
    [8] PACHECO M T, VEZZA T, DIEZ-ECHAVE P, et al. Anti-inflammatory bowel effect of industrial orange by-products in DSS-treated mice[J]. Food Function,2018,9(9):4888−4896. doi: 10.1039/C8FO01060A
    [9] VALKO M, LEIBFRITZ D, MONCOL J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. International Journal of Biochemistry & Cell Biology,2007,39(1):44−84.
    [10] EBRAHIMI P, LANTE A. Polyphenols: A comprehensive review of their nutritional properties[J]. The Open Biotechnology Journal,2021,15(1):164−172. doi: 10.2174/1874070702115010164
    [11] DIREITO R, ROCHA J, SEPODES B, et al. Phenolic compounds impact on rheumatoid arthritis, inflammatory bowel disease and microbiota modulation[J]. Pharmaceutics,2021,13(2):145. doi: 10.3390/pharmaceutics13020145
    [12] XU J, VIDYARTHI S K, BAI W, et al. Nutritional constituents, health benefits and processing of Rosa roxburghii: A review[J]. Journal of Functional Foods,2019:60.
    [13] GIMÉNEZ-BASTIDA J A, ÁVILA-GÁLVEZ M Á, ESPÍN J C, et al. Evidence for health properties of pomegranate juices and extracts beyond nutrition: A critical systematic review of human studies[J]. Trends in Food Science & Technology,2021,114:410−423.
    [14] EL NEWEHY N M, ABD-ALHASEEB M M, OMRAN G A, et al. Comparative metabolomics reveal intraspecies variability in bioactive compounds of different cultivars of pomegranate fruit (Punica granatum L.) and their waste by-products[J]. Journal of the Science of Food and Agriculture,2022,102(13):5891−5902. doi: 10.1002/jsfa.11940
    [15] HE J Y, ZHANG Y H, MA N, et al. Comparative analysis of multiple ingredients in Rosa roxburghii and R. sterilis fruits and their antioxidant activities[J]. Journal of Functional Foods,2016,27:29−41. doi: 10.1016/j.jff.2016.08.058
    [16] LI H, FANG W, WANG Z, et al. Physicochemical, biological properties, and flavour profile of Rosa roxburghii Tratt, Pyracantha fortuneana, and Rosa laevigata Michx fruits: A comprehensive review[J]. Food Chemistry,2022,366:130509. doi: 10.1016/j.foodchem.2021.130509
    [17] 赵斯尘, 王永刚. 药食同源刺梨的研究进展[J]. 食品工业,2022,43(3):186−191. [ZHAO S C, WANG Y G. Research progress of edible Rosa roxburghii Tratt[J]. The Food Industry,2022,43(3):186−191.
    [18] MATHON C, CHATER J M, GREEN A, et al. Quantification of punicalagins in commercial preparations and pomegranate cultivars, by liquid chromatography-mass spectrometry[J]. Journal of the Science of Food and Agriculture,2019,99(8):4036−4042. doi: 10.1002/jsfa.9631
    [19] MANDAL A, BHATIA D, BISHAYEE A. Anti-inflammatory mechanism involved in pomegranate-mediated prevention of breast cancer: The role of NF-kappa B and Nrf2 signaling pathways[J]. Nutrients,2017,9(5):436. doi: 10.3390/nu9050436
    [20] PEREZ R, LACA A, LACA A, et al. Environmental behaviour of blueberry production at small-scale in Northern Spain and improvement opportunities[J]. Journal of Cleaner Production,2022:339.
    [21] ZHOU L, XIE M H, YANG F, et al. Antioxidant activity of high purity blueberry anthocyanins and the effects on human intestinal microbiota[J]. LWT-Food Science and Technology,2020:117.
    [22] QNEIBI M, HANANIA M, JARADAT N, et al. Inula viscosa (L.) Greuter, phytochemical composition, antioxidant, total phenolic content, total flavonoids content and neuroprotective effects[J]. European Journal of Integrative Medicine,2021:42.
    [23] 刘翰飞. 刺梨抗氧化抑菌作用的谱效关系研究 [D]. 贵阳: 贵州大学, 2020.

    LIU H F. Study on the spectrum-effect relationship of anti-oxidation and bacteriostasis of Rose roxburghii [D]. Guiyang: Guizhou University, 2020.
    [24] HE J M, YIN T P, CHEN Y, et al. Phenolic compounds and antioxidant activities of edible flowers of Pyrus pashia[J]. Journal of Functional Foods,2015,17:371−379. doi: 10.1016/j.jff.2015.05.045
    [25] CHEN G, KAN J. Characterization of a novel polysaccharide isolated from Rosa roxburghii Tratt fruit and assessment of its antioxidant in vitro and in vivo [J]. International Journal of Biological Macromolecules, 2018, 107(Pt A): 166-174.
    [26] DING A, WEN X. Dandelion root extract protects NCM460 colonic cells and relieves experimental mouse colitis[J]. Journal of Natural Medicines,2018,72(4):857−866. doi: 10.1007/s11418-018-1217-7
    [27] BHATTACHARYYA S, DUDEJA P K, TOBACMAN J K. ROS, Hsp27, and IKKbeta mediate dextran sodium sulfate (DSS) activation of IkappaBa, NFkappaB, and IL-8[J]. Inflammatory Bowel Diseases,2009,15(5):673−683. doi: 10.1002/ibd.20821
    [28] 熊颖, 禹霖, 柏文富, 等. 不同品种蓝莓果实品质特征和抗氧化能力及多酚组成的比较[J]. 中南林业科技大学学报,2022,42(2):119−128. [XIONG Y, YU L, BAI W F, et al. Evaluation of quality characteristics, antioxidant ability and polyphenol composition of different blueberry cultivars[J]. Journal of Central South University of Forestry & Technology,2022,42(2):119−128.
    [29] BRIGHENTI V, GROOTHUIS S F, PRENCIPE F P, et al. Metabolite fingerprinting of Punica granatum L. (pomegranate) polyphenols by means of high-performance liquid chromatography with diode array and electrospray ionization-mass spectrometry detection[J]. Journal of Chromatography A,2017,1480:20−31. doi: 10.1016/j.chroma.2016.12.017
    [30] BECKER PERTUZATTI P, TEIXEIRA BARCIA M, GOMEZ-ALONSO S, et al. Phenolics profiling by HPLC-DAD-ESI-MS(n) aided by principal component analysis to classify Rabbiteye and Highbush blueberries[J]. Food Chemistry,2021,340:127958. doi: 10.1016/j.foodchem.2020.127958
    [31] WANG L T, LV M J, AN J Y, et al. Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: A review[J]. Food Function,2021,12(4):1432−1451. doi: 10.1039/D0FO02603D
    [32] YANG Q Q, ZHANG D, FARHA A K, et al. Phytochemicals, essential oils, and bioactivities of an underutilized wild fruit Cili (Rosa roxburghii)[J]. Industrial Crops and Products,2020,143:11928.
    [33] CHIU H F, VENKATAKRISHNAN K, GOLOVINSKAIA O, et al. Gastroprotective effects of polyphenols against various gastro-intestinal disorders: A mini-review with special focus on clinical evidence[J]. Molecules,2021,26(7):2090. doi: 10.3390/molecules26072090
    [34] PISOSCHI A M, POP A. The role of antioxidants in the chemistry of oxidative stress: A review[J]. European Journal of Medicinal Chemistry,2015,97:55−74. doi: 10.1016/j.ejmech.2015.04.040
    [35] LIU C, CHAN L P, LIANG C H. The anti-aging activities against oxidative damages of Rosa roxburghii and multi-fruit concentrate drink[J]. Journal of Food and Nutrition Research,2020,7(12):845−850. doi: 10.12691/jfnr-7-12-5
    [36] TOPALOVIC A, KNEZEVIC M, IVANOVIC L, et al. Phytochemical screening of wild pomegranate (Punica granatum L.) juices from the market[J]. Journal of Food Composition and Analysis,2021:100.
    [37] YANG W J, GUO Y X, LIU M, et al. Structure and function of blueberry anthocyanins: A review of recent advances[J]. Journal of Functional Foods,2022:88.
    [38] FELGUS-LAVEFVE L, HOWARD L, ADAMS S H, et al. The effects of blueberry phytochemicals on cell models of inflammation and oxidative stress[J]. Advances In Nutrition,2022,13(4):1279−1309. doi: 10.1093/advances/nmab137
    [39] ALI H, JAHAN A, SAMRANA S, et al. Hepatoprotective potential of pomegranate in curbing the incidence of acute liver injury by alleviating oxidative stress and inflammatory response[J]. Frontiers in Pharmacology,2021,12:694607. doi: 10.3389/fphar.2021.694607
    [40] POUNIS G, COSTANZO S, BONACCIO M, et al. Reduced mortality risk by a polyphenol-rich diet: An analysis from the Moli-sani study[J]. Nutrition,2018,48:87−95. doi: 10.1016/j.nut.2017.11.012
    [41] 卢薇, 费建军, 沈晓梅, 等. 五种果汁的酚类组成及其抗氧化、抗肿瘤细胞增殖活性研究[J]. 食品工业科技,2021,43:365−371. [LU W, FEI J J, CHEN X M, et al. Phenolic profiles, antioxidant and antiproliferative activities towards tumor cells of five fruit juices[J]. Science and Technology of Food Industry,2021,43:365−371. doi: 10.13386/j.issn1002-0306.2021070043
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-13
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回