Comparative Analysis of Quality of Raw Cut Steak in Different Parts
-
摘要: 以销量较高的4种不同部位原切牛排(板腱、西冷、肉眼、牛柳)为研究对象,分别对其常规营养成分、挥发性风味物质、色差L*值、a*值、b*值、保水性、质构、氨基酸等指标进行对比分析,研究不同部位原切牛排的营养特性、食用品质、加工适宜性之间的差异。结果表明:常规营养成分中板腱部位蛋白质含量最高,西冷部位脂肪含量最高,水分含量低,牛柳部位脂肪含量低但水分含量最高;4个部位共检出100种挥发性风味物质,板腱、西冷、牛柳、肉眼分别检测出50、56、48、40种挥发性物质。其中4个部位共有的挥发性风味物质共9种,壬醛在4个部位牛排中含量均居于首位,是原切牛排主要风味物质之一;色差测定结果显示,牛柳与其他三个部位的L*、a*、b*存在显著性差异(P<0.05),亮度最低,颜色偏浅;4个部位蒸煮损失率均较小且不存在显著性差异(P>0.05);板腱解冻损失率最低,适合冷冻保存;质构指标测定结果表明,板腱硬度与咀嚼性均最高,肉眼硬度和咀嚼性均最低(P>0.05),肉眼食用品质比牛柳更好;4个不同部位原切牛排必需氨基酸与总氨基酸的比值(essential amino acid/total amino acid,EAA/TAA)分别为39.80%、39.10%、38.90%、39.50%,均在40%左右,且谷氨酸、组氨酸等鲜味氨基酸含量较高,均属于优质蛋白质。Abstract: With the four different parts (plate tendon, sirloin beef the naked eye, and beef fillet) of raw cut steak as the research object, this paper made a comparative analysis of its conventional nutrients, volatile flavor substances, amino acids, the color L* value, a* value, b* value, water retention, etc, investigated the differences of the different parts of the raw cut steak in nutrition characteristics, edible quality, and processing suitability. According to the results, among the conventional nutrients, the protein content of plate tendon was the highest, the fat content of sirloin beef was the highest, but with the lowest water content, while the fat content of beef fillet was the lowest but with the highest water content. A total of 100 kinds of volatile flavor substances had been detected in the four parts, and 50, 56, 48 and 40 kinds of volatile substances were detected in plate tendon, sirloin, naked eye and beef fillet, respectively. Among them, there were 9 kinds of volatile flavor substances shared by 4 parts of steak. Nonanal content ranked top in 4 parts of steak, which was one of the main flavor substances of raw cut steak. In the color difference, there were significant differences in L*, a* and b* between beef fillet and the other three parts (P<0.05), with the lowest brightness and lighter color. The cooking loss rate of the four parts was small, without significant difference (P>0.05). Plate Tendon was suitable for cryopreservation because of its lowest thawing loss rate. Among the texture indexes, the hardness and chewiness of plate tendon were the highest, whereas the hardness and chewiness of naked eye were the lowest (P>0.05). The ratios of essential amino acid/total amino acid (EAA/TAA) to total amino acid (EAA/TAA) in 4 different parts of raw steak were 39.80%, 39.10%, 38.90% and 39.50%, respectively, which were all around 40%. The contents of glutamic acid, histidine and other umami amino acids in 4 different parts of raw cut steak were higher. Thus, the raw cut steak of four different parts belonged to high-quality protein.
-
Key words:
- different parts /
- raw cut steak /
- quality /
- comparison and analysis
-
表 1 不同部位原切牛排常规营养成分测定结果(g/100 g)
Table 1. Results of nutrient composition determination of raw cut steaks from different parts(g/100 g)
肌肉部位 蛋白质 脂肪 水分 板腱 23.73±0.11a 10.67±0.51c 65.43±0.61b 西冷 21.60±0.36b 25.83±0.47a 51.67±0.93d 肉眼 18.47±0.06c 22.17±0.21b 59.20±0.17c 牛柳 21.43±0.40b 4.33±0.40d 73.17±0.38a 注:不同字母表示具有显著性,P<0.05;表4~表7同。 表 2 4种不同部位原切牛排挥发性风味物质种类及相对含量
Table 2. Types and relative contents of volatile flavor compounds in raw cut steaks from 4 different parts
物质种类 板腱 西冷 牛柳 肉眼 数量 相对含量(%) 数量 相对含量(%) 数量 相对含量(%) 数量 相对含量(%) 酯类 4 7.51 4 5.96 5 5.34 11 36.62 烯类 3 1.36 3 1.12 3 4.97 1 0.65 酮类 6 0.87 4 2.92 3 2.37 2 1.25 酸类 10 9.75 6 4.65 11 19.47 3 10.60 醛类 11 71.29 18 67.80 14 55.15 5 22.91 醇类 12 6.70 15 13.60 8 9.58 14 20.42 其他 4 2.52 6 3.95 4 3.11 4 7.56 合计 50 88.50 56 95.78 48 74.20 40 73.71 表 3 不同部位原切牛排风味化合物测定结果
Table 3. Results of flavor compounds determination of raw cut steaks from different parts
种类 中文名称 保留时间(min) 相对含量(%) 板腱 西冷 牛柳 肉眼 酯类 戊酸乙酯 5.23 − − − 0.11 己酸乙酯 8.28 − − − 15.22 2-乙基-1,2,3-丙三酯丁酸 8.70 − − − 0.72 2-羟基戊酸甲酯 12.16 − − − 1.28 辛酸乙酯 15.95 − − − 0.38 丁酸四氢香叶酯 16.80 − − 0.30 − 氰基乙酸-2-乙基己基酯 18.17 − − − 0.56 甲酸辛酯 20.83 6.14 5.41 2.59 − 丁内酯 21.96 0.21 0.10 − 0.46 2-羟基丙酸乙酯 32.16 − − − 6.42 氨基甲酸二乙酯 35.51 0.19 − − − 十四酸4,8,12-三甲基-甲酯 43.30 − − 0.16 − 1,2-苯二甲酸双(2-甲基丙基)酯 52.12 − 0.06 0.31 0.35 邻苯二甲酸二(2-乙基己基)酯 53.83 − − − 0.79 邻苯二甲酸二丁酯 54.76 0.11 0.14 0.60 0.7 烯类 D-柠檬烯 6.87 − − − 0.48 β-双沙泊烯 26.89 0.55 0.62 0.15 − [R-[R*,R*-(E)]]-3,7,11,15-四甲基-2-十六烯 30.24 0.14 0.36 − − 3,7,11,15-四甲基十六碳-2-烯 32.77 0.51 − 2.02 − 新植二烯 34.54 − 0.09 1.52 − 酮类 2-辛酮 9.94 0.07 − − − 2,3-辛二酮 11.65 0.14 1.46 0.23 0.45 6-甲基-5-庚-2-酮 11.87 0.09 0.30 0.26 − 2-壬酮 13.92 0.33 − − − 2-十一烷酮 22.13 0.06 − − 0.47 (Z)-6,10-二甲基-5,9-十一二烯-2-酮 31.35 − 0.99 1.27 − 二氢-5-戊基-2(3H)-呋喃酮 36.13 0.08 0.05 − − 酸类 醋酸 16.10 1.05 − 0.76 0.77 丁酸 23.06 0.27 − 1.88 0.55 己酸 30.98 0.53 0.57 2.66 6.49 庚酸 34.64 0.15 − 0.34 − 辛酸 38.11 0.82 0.49 1.71 − 壬酸 41.41 3.93 2.19 1.42 − 癸酸 44.60 0.96 0.68 0.91 − 正十六酸 49.11 0.43 − 3.95 − 十二酸 50.99 0.42 0.46 0.62 − 十三酸 53.52 − − 0.06 − 十四酸 54.36 0.07 0.06 0.14 − 醛类 己醛 3.98 0.38 6.52 0.68 1.57 庚醛 6.63 0.81 2.54 − − 辛醛 10.14 5.96 5.73 1.55 − 壬醛 14.16 49.77 31.97 10.45 2.11 (E)-2-辛烯醛 15.23 − 0.43 − − 13-甲基十四醛 16.46 0.59 0.18 0.36 − 癸醛 18.29 4.1 2.20 1.73 − 苯甲醛 18.47 0.37 8.33 5.66 8.77 (E)-2-壬醛 19.39 0.16 0.64 0.21 − (E)-2-癸醛 23.54 − 0.60 0.21 − 十二醛 26.36 0.17 0.15 0.14 − 反-2-十一烯醛 27.54 − 0.60 − − (E,E)-2,4-癸二烯醛 29.41 − 0.17 − − 十三醛 30.16 − 0.36 − − 十四烷醛 33.80 − 0.55 0.92 − 十五醛- 37.25 0.14 − − − 十五醛 37.29 − 0.88 1.75 − 七醛 40.56 − − − 3.84 十六醛 40.62 0.64 2.83 12.27 − 十七醛 43.80 − − 0.87 − 十八醛 46.90 − 0.26 4.12 0.60 醇类 乙醇 3.81 − − − 0.12 2-甲基-1-丙醇 4.29 − − − 0.26 1-丁醇 5.48 − − − 0.47 3-甲基-1-丁醇 7.36 − 0.55 − 0.82 正戊醇 8.88 0.25 1.01 0.29 − 正己醇 12.76 0.43 1.60 − − 甲硫醇 16.06 − 0.20 − − 1-辛烯-3-醇 16.71 1.35 3.37 2.07 1.23 1-庚醇 16.74 − − − 0.15 庚醇 16.8 0.30 1.12 − − 芳樟醇 20.55 0.18 0.15 − 0.34 正辛醇 20.77 − − − 1.02 [R-(R*,R*)]-2,3-丁二醇 21.21 − − 0.33 − 1-甲基环庚醇 21.49 − − 0.21 − 2-(2-乙氧基)-乙醇 22.64 0.11 − − 0.56 反-2-十一烯-1-醇 22.94 0.33 − − − 2-辛烯-1-醇 22.97 − 1.15 − − 二甲基硅丙二醇 24.45 0.75 1.58 2.12 7.23 1-壬醇 24.73 1.14 0.91 0.49 − 10-十一烯-1-醇 25.47 − 0.19 − − 1,7,7-三甲基-甲酸酯内酰胺-双环[2.2.1]庚烷-2-醇 25.55 − − − 1.41 香叶醇 31.30 0.26 − − − 1-十一烯醇 32.08 0.13 0.53 − − 1,4-丁二醇 33.38 − − − 0.82 1-十二烷醇 35.54 − 0.19 − 0.40 十四醇 42.01 − 0.05 0.16 − 甘油 44.86 0.70 0.43 1.44 − 十六醇 53.60 − − − 0.22 其它 1.2-二乙酰肼 8.04 − − − 0.67 1,3-双(1,1-二甲基乙基)-苯 15.64 0.31 0.95 − − 萘 26.21 0.08 − − − 异龙脑 26.54 − 0.28 − − 1-(1,5-二甲基-4-己烯基)-4-甲基-苯 28.48 0.87 1.16 0.33 − 甲氧基苯基-肟 29.18 0.97 1.02 1.52 2.58 茴香脑 29.86 − − − 1.94 苯酚 35.85 − − − 0.38 对甲酚 38.40 − 0.18 − − 2,4-二叔丁基苯酚 46.03 − 0.19 − − 2,3-二氢噻吩 46.39 − − 0.28 − 吲哚 48.27 − − 0.18 − 注:−表示未检出。 表 4 不同部位原切牛排色差测定结果
Table 4. Test results of color difference of original cut steak in different parts
不同部位 L* a* b* 板腱 40.89±0.75a 14.54±0.29c 5.39±0.22b 西冷 39.21±0.91a 18.19±1.40b 7.71±0.20a 肉眼 38.76±0.93a 22.00±1.91a 7.50±0.11a 牛柳 33.49±2.09b 13.70±1.67c 3.48±0.11c 表 5 不同部位原切牛排解冻损失与蒸煮损失测定结果
Table 5. Results of thawing loss and cooking loss of raw cut steak in different parts
肌肉部位 解冻损失率(%) 蒸煮损失率(%) 板腱 5.52±0.76b 25.72±2.24 肉眼 7.21±3.04ab 26.96±3.71 西冷 10.00±2.08a 25.01±4.88 牛柳 10.36±0.58a 26.49±3.45 表 6 不同部位原切牛排质构测定结果
Table 6. Results of texture determination of original cut steaks from different parts
部位 内聚性 (Ratio) 弹性(mm) 胶黏性(N) 咀嚼性(mJ) 黏附性(mJ) 硬度(N) 板腱 0.35±0.08a 6.07±1.99a 28.28±6.56a 171.16±36.5a 1.37±0.33c 90.05±3.75a 西冷 0.28±0.02a 5.13±0.31a 31.51±2.94a 160.89±6.30a 8.41±3.03b 85.37±4.99a 肉眼 0.34±0.02a 5.18±0.70a 23.74±8.35a 119.96±30.43a 16.00±1.36a 62.54±12.01b 牛柳 0.35±0.04a 5.04±1.39a 34.53±1.04a 169.21±53.87a 6.75±3.58b 86.29±5.11a 表 7 不同部位原切牛排氨基酸组分测定结果
Table 7. Results of amino acid composition determination of original cut steak from different parts
项目 牛柳(g/100 g) 肉眼(g/100 g) 板腱(g/100 g) 西冷(g/100 g) 天门冬氨酸(Asp) 1.919±0.011a 1.787±0.003b 1.594±0.056c 1.731±0.005d 苏氨酸(Thr) 0.963±0.041a 0.886±0.100b 0.777±0.020c 0.846±0.015d 丝氨酸(ser) 0.781±0.006a 0.745±0.006a 0.675±0.015b 0.688±0.037b 谷氨酸(Glu) 3.366±0.012a 3.173±0.002b 2.981±0.102c 3.048±0.007c 甘氨酸(Gly) 0.852±0.02 0.891±0.007 0.815±0.044 0.855±0.061 丙氨酸(Ala) 1.179±0.011a 1.121±0.001b 0.998±0.041c 1.072±0.004d 缬氨酸(Val) 0.977±0.092a 0.916±0.003b 0.799±0.033c 0.894±0.014b 蛋氨酸(Met) 0.582±0.001a 0.517±0.002b 0.452±0.014c 0.508±0.001b 异亮氨酸(Ile) 0.936±0.046a 0.865±0.001b 0.742±0.025c 0.846±0.007b 亮氨酸(Leu) 1.721±0.008a 1.568±0.008b 1.421±0.052d 1.499±0.002c 酪氨酸(Tyr) 0.802±0.002a 0.747±0.005b 0.666±0.025d 0.716±0.002c 苯丙氨酸(Phe) 0.855±0.004a 0.784±0.001b 0.701±0.024d 0.754±0.002c 赖氨酸(Lys) 1.875±0.005a 1.732±0.003b 1.559±0.061d 1.671±0.003c 组氨酸(His) 0.762±0.006a 0.746±0.001a 0.512±0.022c 0.714±0.003b 精氨酸(Arg) 1.303±0.012a 1.250±0.013b 1.155±0.035c 1.208±0.031b 脯氨酸(Pho) 0.715±0.009a 0.732±0.004a 0.698±0.037a 0.692±0.036a TAA 19.589±0.076a 18.464±0.009b 16.550±0.603d 17.746±0.172c EAA 7.799±0.104a 7.222±0.067b 6.453±0.226c 7.020±0.009b NEAA 11.800±0.095a 11.242±0.076b 10.098±0.377d 10.726±0.181c EAA/TAA 0.398±0.005a 0.391±0.003ab 0.389±0.001b 0.395±0.004ab EAA/NEAA 0.660±0.013a 0.643±0.0100ab 0.638±0.001b 0.655±0.009ab -
[1] 穆静, 孙慧琳, 查恩辉. 不同储藏条件对牛肉品质的影响[J]. 保鲜与加工,2022,22(7):21−30. [MU J, SUN H J, CHA E H. Effects of different storage conditions on beef quality[J]. Preservation and Processing,2022,22(7):21−30. [2] 朱青云, 谭亮, 赵静. 青海高原地区牦牛肉营养成分分析与品质评价[J]. 食品与生物技术学报,2021,40(11):97−111. [ZHU Q Y, TAN L, ZHAO J. Analysis of nutritional compositions and quality evaluation of yak meat from Qinghai plateau regions[J]. Journal of Food Science and Biotechnology,2021,40(11):97−111. [3] 李慧, 连海飞, 王德宝. 不同部位西门塔尔牛肉理化品质分析及烤制加工适宜性的研究[J]. 畜牧与饲料科学,2021,42(3):97−101. [LI H, LIAN H F, WANG D B. Analysis of physical-chemical quality and suitability evaluation for roast processing of beef cuts from different parts of simmental cattle[J]. Animal Husbandry and Feed Science,2021,42(3):97−101. doi: 10.12160/j.issn.1672-5190.2021.03.018 [4] 郎玉苗, 杨春柳, 孙宝忠. 安格斯×秦川育肥牛牛体不同部位肌肉肉质特性比较分析[J]. 黑龙江畜牧兽医,2019(3):52−57. [LANG Y M, YANG C L, SUN B Z. Meat quality characteristics of different muscles from fattened Angus×Qinchuan cattle[J]. Heilongjiang Animal Science and Veterinary Medicine,2019(3):52−57. doi: 10.13881/j.cnki.hljxmsy.2018.07.0375 [5] 刘雪霏, 游佳伟, 程可欣. 不同部位牛肉烤制加工的适宜性[J]. 食品科学,2021,42(11):86−93. [LIU X F, YOU J W, CHENG K X. Roasting suitability of different beef from different cuts[J]. Food Science,2021,42(11):86−93. [6] GB 5009.3-2016, 食品安全国家标准 食品中水分的测定[S]. 北京: 中国标准出版社, 2016.GB 5009.3-2016, National Food Safety Standard. Determination of moisture in foods[S]. BEIJING: Standards Press of China, 2016. [7] GB 5009.6-2016, 食品安全国家标准 食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016.GB 5009.6-2016, National Food Safety Standard. Determination of fat in foods [S]. BEIJING: Standards Press of China, 2016. [8] GB 5009.5-2016, 食品安全国家标准 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016.GB 5009.5-2016, National Food Safety Standard. Determination of protein in foods [S]. BEIJING: Standards Press of China, 2016. [9] HUMADA MJ, SAÑUDO C, SERRANO E. Chemical composition, vitamin E content, lipid oxidation, colour and cooking losses in meat from Tudanca bulls finished on semi-extensive or intensive systems and slaughtered at 12 or 14 months[J]. Meat Science,2014,96(2):908−915. doi: 10.1016/j.meatsci.2013.10.004 [10] 赵改名, 王可, 祝超智. 青海高原型牦牛不同部位肉的品质差异研究[J]. 食品研究与开发,2020,41(13):60−65. [ZHAO G M, WANG K, ZHU C Z. Study on eat quality differences of different parts of qinghai high-prototype yak[J]. Food Research and Development,2020,41(13):60−65. [11] LI Chunbao, CHEN Yinji, XU Xinglian, et al. Effects of lowvoltage electrical stimulation and rapid chilling on meat quality characteristics of Chinese ellow crossbredbulls[J]. Meat Science,2010,72(1):9−17. [12] 李莹, 张伟敏, 黄海珠. 三种猪肉质构特性比较研究[J]. 食品研究与开发,2018,39(10):22−27. [LI Y, ZHANG W M, HUANG H Z. Comparative study on the texture characteristics of three kinds of pork[J]. Food Research and Development,2018,39(10):22−27. [13] KAZALA E C, LOZEMAN F J, MIR P S, et al. Relationship of fatty acid composition to intramuscular fat content in beef from crossbred Wagyu cattle[J]. Journal of Animal Science,1999,77(7):1717−1725. doi: 10.2527/1999.7771717x [14] 张哲奇, 臧明伍, 张凯华, 等. 国内外肉品品质变化机制机理研究进展[J]. 肉类研究, 2017, 31(2): 57-63.ZHANG Z Q, ZANG M W, ZHANG K H, et al. State of the art in worldwide studies on mechanism of meat quality changes[J]. Meat Research, 2017, 31(2): 57-63. [15] 李娜, 常紫阳, 余群力, 等. 新疆褐牛不同部位肉品质特性研究[J]. 现代农业科技,2019(5):217−219. [LI N, CHANG Z Y, YU Q L. Study on eat quality characteristics of different parts of xinjiang brown cattle[J]. Modern Agricultural Technology,2019(5):217−219. [16] 王可. 不同部位青海高原型牦牛肉加工特性与加工适宜性研究[D].郑州: 河南农业大学, 2020.WANG K. Study on processing characteristics and suitability of Qinghai plateau yak meat from different parts [D]. Zhengzhou: Henan Agricultural University, 2020. [17] 陈红霞. 伊拉兔生长过程中挥发性风味物质的变化及其定量研究[D]. 重庆, 西南大学, 2014.CHEN H X. Quantitative study on changes of volatile flavor compounds of Hyla rabbit during the growth[D]. Chongqing: Southwest University, 2014. [18] 赵万余, 李爱华. 宁夏滩羊不同部位肉中挥发性风味物质分析[J]. 安徽农业科学,2012,40(5):2725−2727. [ZHAO W Y, LI A H. Volatile flavor composition in mutton of Ningxia Tan sheep[J]. Journal of Anhui Agriculture and Science,2012,40(5):2725−2727. doi: 10.13989/j.cnki.0517-6611.2012.05.236 [19] 侯莉, 赵健, 赵梦瑶,. 炖煮牛肉的风味物质分析[J]. 中国食品学报,2017,17(9):260−270. [HOU L, ZHAO J, ZHAO M Y. Analysis of the flavor compounds from stewed beef[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(9):260−270. [20] 柯海瑞. 高温处理对牛肉脂肪及挥发性风味物质的影响研究[D]. 郑州: 河南科技大学, 2020.KE H R. Effect of high temperature treatment on beef fat and volatile flavors[D]. Zhengzhou: Henan University of Science and Technology, 2020. [21] 王恒鹏, 吴鹏, 陈胜姝, 等. 排酸时间与熟制程度对牛肉挥发性风味物质的影响[J]. 食品与机械,2018,34(12):16−21. [WANG H P, WU P, CHEN S S, et al. Effects of aging time and cooking degree on volatile flavors of beef[J]. Food & Machinery,2018,34(12):16−21. [22] DEL, OLMO, ANA. Effect of high pressure processing and modified atmosphere packaging on the safety and quality of sliced ready-to-eat "lacon", a cured-cooked pork meat product[J]. Innovative Food Science & Emerging Technologies, 2014, 23(Null). [23] MANCINI A, SUMAN S P, KONDA M K R, et al. Effect of carbon monoxide packaging and lactate enhancement on the color stability of beef steaks stored at 1℃ for 9 days[J]. Meat Science,2009,81(1):71−76. doi: 10.1016/j.meatsci.2008.06.021 [24] SARR S M V, BERIAIN M J. Colour and texture characteristics in meat of male and female foals[J]. Meat Science,2006,74(4):738−745. doi: 10.1016/j.meatsci.2006.06.005 [25] 明丹丹, 张一敏, 董鹏程, 等. 牛肉肉色的影响因素及其控制技术研究进展[J]. 食品科学,2020,41(1):284−291. [MING D D, ZHANG Y M, DONG P C, et al. Recent progress in studies of factors influencing beef color and technologies for controlling it[J]. Food Science,2020,41(1):284−291. [26] BARTOЙLUDĚK, BUREŠD, KOTRBA, R, et al. Comparison of meat quality between eland (Taurotragus oryx) and cattle (Bos taurus) raised under similar conditions[J]. Meat Science,2014,96(1):346−352. doi: 10.1016/j.meatsci.2013.07.016 [27] 赵改名, 茹昂, 郝婉名. 不同母本西门塔尔杂交牛各部位肉品质与蛋白质功能特性的差异[J]. 食品与发酵工业,2021,47(7):78−85. [ZHAO G M, RU A, HAO W M. Comparation of meat quality and protein functional properties of different maternal Simmental hybrid cattle[J]. Food and Fermentation Industries,2021,47(7):78−85. doi: 10.13995/j.cnki.11-1802/ts.025392 [28] LEE B, YOON S, CHOI Y M. Comparison of marbling fleck characteristics between beef marbling grades and its effect on sensory quality characteristics in high-marbled Hanwoo steer[J]. Meat Science,2019,152(Jun.):109−115. [29] 敖冉, 赵雪聪, 王伟, 等. 驴肉在低温成熟过程中质构变化研究[J]. 食品工业,2016,37(7):126−128. [AO R, ZHAO X C, WANG W, et al. Research on the texture index of donkey meat during the postmortem aging at low temperature[J]. Food Industry,2016,37(7):126−128. [30] 侯成立, 李欣, 王振宇. 不同部位牦牛肉氨基酸、脂肪酸含量分析与营养价值评价[J]. 肉类研究,2019,33(2):52−57. [HOU C L, LI X, WANG Z Y. Amino acid and fatty acid composition and nutritional value evaluation of different yak meat cuts[J]. Meat Research,2019,33(2):52−57. doi: 10.7506/rlyj1001-8123-20190121-016 [31] NINA R, ANDREAS D, THOMAS H. Quantitative studies, taste reconstitution, and omission experiments on the key taste compounds in morel mushrooms (Morchella deliciosa Fr.)[J]. Journal of Agriculture and Food Chemistry,2006,54(7):2705−2711. doi: 10.1021/jf053131y [32] 高媛, 黄彩霞, 冯岗. 风干牦牛肉氨基酸与脂肪酸组成分析评价[J]. 食品工业科技,2013,34(13):317−320. [GAO Y, HUANG C X, FENG G. Amino acid and fatty acid composition assay of airing yak meat[J]. Science and Technology of Food Industry,2013,34(13):317−320. doi: 10.13386/j.issn1002-0306.2013.13.072 [33] 罗毅皓, 刘书杰. 青海大通牦牛肉氨基酸及风味分析[J]. 食品科技,2010,35(2):106−110,113. [LUO Y H, LIU S J. Study on the nutrient and flavor of Datong yak meat[J]. Food Science and Technology,2010,35(2):106−110,113. doi: 10.13684/j.cnki.spkj.2010.02.040 [34] 邱翔, 张磊, 文勇立, 等. 四川牦牛、黄牛主要品种肉的营养成分分析[J]. 食品科学,2010,31(15):112−116. [QIU X, ZHANG L, WEN Y L, et al. Nutritional composition analysis of meat from yak and yellow cattle in Sichuan[J]. Food Science,2010,31(15):112−116. [35] LI P, MAIK S, TRUSHENSKI J, et al. New develop-ments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds[J]. Amino Acids,2009,37(1):43−53. doi: 10.1007/s00726-008-0171-1 [36] LARSSON T, KOPPANG E O, ESPE M, et al. Fillet quality and health of Atlantic salmon (Salmo salar L.) fed a diet supplemented with glutamate[J]. Aqua-Culture,2014,426-427(1):288−295.
计量
- 文章访问数: 28
- HTML全文浏览量: 27
- PDF下载量: 0
- 被引次数: 0