留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火龙果热泵干燥特性及收缩动力学模型分析

韩琭丛 金听祥 张振亚 王广红 刘建秀

韩琭丛,金听祥,张振亚,等. 火龙果热泵干燥特性及收缩动力学模型分析[J]. 食品工业科技,2023,44(10):242−248. doi: 10.13386/j.issn1002-0306.2022070147
引用本文: 韩琭丛,金听祥,张振亚,等. 火龙果热泵干燥特性及收缩动力学模型分析[J]. 食品工业科技,2023,44(10):242−248. doi: 10.13386/j.issn1002-0306.2022070147
HAN Lucong, JIN Tingxiang, ZHANG Zhenya, et al. Drying Characteristics and Shrinkage Model Analysis of Pitaya Heat Pump Drying[J]. Science and Technology of Food Industry, 2023, 44(10): 242−248. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070147
Citation: HAN Lucong, JIN Tingxiang, ZHANG Zhenya, et al. Drying Characteristics and Shrinkage Model Analysis of Pitaya Heat Pump Drying[J]. Science and Technology of Food Industry, 2023, 44(10): 242−248. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070147

火龙果热泵干燥特性及收缩动力学模型分析

doi: 10.13386/j.issn1002-0306.2022070147
基金项目: 郑州轻工业大学博士科研基金(2020BSJJ082);河南省科技攻关项目(222102320075);国家自然科学基金联合基金(U190410595);河南省研究生教育创新培养基地项目(YJS2021JD05)。
详细信息
    作者简介:

    韩琭丛(1998−),男,硕士研究生,研究方向:热泵干燥,E-mail:hlc980416@163.com

    通讯作者:

    金听祥(1976−),男,博士,教授,研究方向:制冷空调设备新技术及关键部件研究,E-mail:txjin@126.com

  • 中图分类号: TS255.3

Drying Characteristics and Shrinkage Model Analysis of Pitaya Heat Pump Drying

  • 摘要: 为了优化火龙果热泵干燥工艺及提升干燥后产品的品质,本文研究了干燥温度、切片厚度和相对湿度对火龙果热泵干燥特性和体积比的影响,并确定了最佳收缩动力学模型,从而可以预测火龙果在不同热泵干燥条件下的体积变化规律。结果表明,干燥温度越高、切片厚度和相对湿度越小,干燥速率越大;其中,干燥温度对干燥速率影响最大,切片厚度影响最小;体积比随干燥温度的升高、切片厚度和相对湿度的减小而减小;对比分析5种薄层干燥模型,Quadratic模型可以精确描述火龙果热泵干燥过程中的体积收缩规律,计算值相对于试验值的平均误差为5.01%;在本文所述热泵干燥条件下,通过阿累尼乌斯方程计算出火龙果的收缩活化能为27.185 kJ/mol。本研究借助体积收缩模型优化热泵干燥工艺参数并获得更合适体积的干制品,可为火龙果在热泵干燥过程中体积收缩规律提供技术支持。

     

  • 图  不同干燥条件下火龙果水分比和干燥速率曲线

    Figure  1.  Moisture ratio and drying rate curve of pitaya at different drying conditions

    图  不同干燥条件下火龙果体积比曲线

    Figure  2.  Volume ratio curve of pitaya under different drying conditions

    图  实验值与拟合值对比图

    Figure  3.  Comparison between experimental values and fitting values

    图  不同干燥温度下火龙果的收缩活化能

    Figure  4.  Shrinkage activation energy of pitaya at different drying temperatures

    表  1  体积收缩模型

    Table  1.   Volume shrinkage model

    模型序号模型名称模型方程
    1Exponential$\rm {V_R} = aexp\left( {bMR} \right)$
    2Quadratic$\rm {V_R} = a+bMR{\text{ } }+cM{R^2}$
    3Hatamipour$\rm {V_R} = a+b{\text{MR} }$
    41阶$\rm {V_R} = {V_{R0} }exp\left( { - kt} \right)$
    5Weibull分布函数$\rm { {\text{V} }_{\text{R} } } = exp[ - {\left(\dfrac{t}{\alpha }\right)^\beta }]$
    下载: 导出CSV

    表  2  火龙果片热泵干燥过程体积收缩模型的拟合结果

    Table  2.   Fitting results of shrinkage models of pitaya chips during heat pump drying process

    序号模型表达式模型参数R2RSSχ2
    Exponential模型ab
    1$\rm {V_R} = aexp\left( {bMR} \right)$0.25380.34880.90990.12560.0047
    20.24470.34160.90360.11480.005
    30.19930.34430.95350.03230.0017
    40.2230.3490.92110.0750.0036
    50.25150.33060.90440.11480.0048
    60.22170.33060.920.06240.003
    70.24630.35330.90660.11210.0047
    Quadratic模型a b c
    1$\rm {V_R} = a+bMR{\text{ } }+cM{R^2}$0.2081 0.2188 −0.00770.98160.02569.86E-4
    20.1961 0.2214 −0.01040.98710.01546.99E-4
    30.1727 0.1549 −9.7E-40.99650.00241.34E-4
    40.1832 0.197 −0.00670.99120.00844.18E-4
    50.2038 0.2217 −0.01160.99020.01185.14E-4
    60.1832 0.195 −0.01080.9960.00311.55E-4
    70.202 0.2099 −0.00630.97690.02740.0011
    Hatamipour模型ab
    1$\rm {V_R} = a+b{\text{MR} }$0.21360.19250.97960.02850.0011
    20.20380.18470.98270.02068.96E-4
    30.17340.15130.99650.00252.29E-4
    40.18780.17340.98920.01024.87E-4
    50.21240.18060.98430.01887.85E-4
    60.1910.15640.98960.00813.86E-4
    70.20680.18860.97540.02920.0012
    1阶模型VR0k
    1$\rm {V_R} = {V_{R0} }exp\left( { - kt} \right)$0.93990.08290.83830.22550.0084
    20.94610.09990.87330.15090.0066
    30.79680.12460.83410.11530.0061
    40.87030.10860.8350.15930.0072
    50.93020.09230.86870.15760.0066
    60.80740.10140.90090.07730.0037
    70.92280.09080.85940.16660.0069
    Weibull分布函数αβ
    1$\rm { {\text{V} }_{\text{R} } } = exp[ - {\left(\dfrac{t}{\alpha }\right)^\beta }]$10.91880.78160.88260.16160.0062
    29.22950.78840.9020.11680.0051
    35.63970.65110.9070.06460.0034
    47.4620.70580.88940.10680.0049
    59.76870.76970.90240.11720.0049
    67.13870.67070.95120.03810.0018
    79.82250.75970.89610.12310.0051
    下载: 导出CSV

    表  3  参数a、b、c的待定系数值

    Table  3.   Undetermined coefficients of parameters a, b and c

    待定系数αβγχ
    a0.2763−0.00160.0022−0.0007
    b0.2279−0.00340.01940.000515
    c0.0609-0.000380.01070.00029
    下载: 导出CSV
  • [1] 王旭旭, 马领领, 马卓云, 等. 火龙果的功能及其作用机制研究进展[J]. 食品工业科技,2019,40(21):352−360. [WANG X X, MA L L, MA Z Y, et al. Research progress on the function of pitaya and its mechanism[J]. Science and Technology of Food Industry,2019,40(21):352−360.
    [2] DONG R, LIU S, XIE J, et al. The recovery, catabolism and potential bioactivity of polyphenols from pitaya subjected to in vitro simulated digestion and colonic fermentation[J]. Food Research International,2021,143:110263. doi: 10.1016/j.foodres.2021.110263
    [3] 董文丽, 巩雪, 侯理达, 等. 壳聚糖/柠檬酸复合涂膜对火龙果的保鲜效果[J]. 包装工程,2021,42(9):72−78. [DONG W L, GONG X, HOU L D, et al. Effects of chitosan and citric acid composite film on preservation of pitaya[J]. Packaging Engineering,2021,42(9):72−78.
    [4] 马国军, 刘英, 李武强, 等. 基于响应面法优化火龙果切片远红外干燥工艺[J]. 中国农机化学报,2019,40(12):106−112. [MA G J, LIU Y, LI W Q, et al. Optimization of pitaya slice deep infrared drying process based on response surface methodology[J]. Journal of Chinese Agricultural Mechanization,2019,40(12):106−112.
    [5] HOU H, CHEN Q, BI J F, et al. Understanding appearance quality improvement of jujube slices during heat pump drying via water state and glass transition[J]. Journal of Food Engineering,2019,272(3):109874.
    [6] MAYOR L, SERENO A M. Modelling shrinkage during convective drying of food materials: A review[J]. Journal of Food Engineering,2004,61(3):373−386. doi: 10.1016/S0260-8774(03)00144-4
    [7] 刘鹤, 焦俊华, 田友, 等. 马铃薯片热风干燥特性及收缩动力学模型[J]. 食品工业科技,2022,43(11):58−64. [LIU H, JIAO J H, TIAN Y, et al. Study on hot-air drying characteristics and shrinkage dynamics model of potato chips[J]. Science and Technology of Food Industry,2022,43(11):58−64.
    [8] 陈良元, 韩李锋, 李旭, 等. 茄子片热风干燥收缩特性及其修正的湿分扩散动力学模型[J]. 农业工程学报,2016,32(15):275−281. [[ CHEN L Y, HAN L F, LI X, et al. Structural shrinkage characteristics and modified moisture diffusion kinetics model of sliced eggplant dried by hot air[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(15):275−281. doi: 10.11975/j.issn.1002-6819.2016.15.038
    [9] DHALSAMANT K, TRIPATHY P P, SHRIVASTAVA S L. Heat transfer analysis during mixed-mode solar drying of potato cylinders incorporating shrinkage: Numerical simulation and experimental validation[J]. Food and Bioproducts Processing,2018,109:107−121. doi: 10.1016/j.fbp.2018.03.005
    [10] BURMESTER K, EGGERS R. Heat and mass transfer during the coffee drying process[J]. Journal of Food Engineering,2010,99(4):430−436. doi: 10.1016/j.jfoodeng.2009.12.021
    [11] SANDOVAL T S, SOLEDAD T A, HERNANDEZ B E. Dimensionless modeling for convective drying of tuberous crop (Solanum tuberosum) by considering shrinkage[J]. Journal of Food Engineering,2017,214:147−157. doi: 10.1016/j.jfoodeng.2017.06.014
    [12] 陈衍男, 王晓, 穆岩, 等. 天麻蒸制后红外干燥特性及失水动力学研究[J]. 食品工业科技,2018,39(22):30−34,40. [CHEN Y N, WANG X, MU Y, et al. Drying characteristics and kinetics research of Gastrodia elata blume under infrared blast drying after steaming[J]. Science and Technology of Food Industry,2018,39(22):30−34,40.
    [13] ELMIZADEH A, SHAHEDI M, HAMDAMI N. Comparison of electrohydrodynamic and hot-air drying of the quince slices[J]. Innovative Food Science & Emerging Technologies,2017,43:130−135.
    [14] OJEDIRAN J O, OKONKWO C E, ADEYI A J, et al. Drying characteristics of yam slices (Dioscorea rotundata) in a convective hot air dryer: Application of ANFIS in the prediction of drying kinetics[J]. Heliyon,2020,6(3):e03555. doi: 10.1016/j.heliyon.2020.e03555
    [15] 沈素晴, 徐亚元, 李大婧, 等. 青香蕉微波干燥特性及动力学模型研究[J]. 食品工业科技,2022,43(14):110−117. [SHEN S Q, XU Y Y, LI D J, et al. Research on microwave drying characteristics and kinetic model of green bananas[J]. Science and Technology of Food Industry,2022,43(14):110−117.
    [16] LI X, LIU Y, GAO Z, et al. Computer vision online measurement of shiitake mushroom (Lentinus edodes) surface wrinkling and shrinkage during hot air drying with humidity control[J]. Journal of Food Engineering,2021,292:110253. doi: 10.1016/j.jfoodeng.2020.110253
    [17] 白竣文, 田潇瑜, 刘宇婧, 等. 大野芋薄层干燥特性及收缩动力学模型研究[J]. 中国食品学报,2018,18(4):124−131. [BAI J W, TIAN X Y, LIU Y J, et al. Studies on drying characteristics and shrinkage kinetics modelling of Colocasia gigantea slices during thin layer drying[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(4):124−131.
    [18] 徐庚, 马月虹, 王庆惠, 等. 芜菁干燥特性及收缩动力学模型研究[J]. 农机化研究,2021,43(10):142−149. [XU G, MA Y H, WANG Q H, et al. Study on physical and dynamical character of the hydroponic butter lettuce[J]. Journal of Agricultural Mechanization Research,2021,43(10):142−149.
    [19] SEERANGURAYAR T, AL-ISMAILI A M, JEEWANTHA L H J, et al. Experimental investigation of shrinkage and microstructural properties of date fruits at three solar drying methods[J]. Solar Energy,2019,180(Mar.):445−455.
    [20] NANVAKENARIA S, MOVAGHARNEJAD K, LATIFI A. Modelling and experimental analysis of rice drying in new fluidized bed assisted hybrid infrared-microwave dryer[J]. Food Research International,2022,159:111617. doi: 10.1016/j.foodres.2022.111617
    [21] DEHGHANNYA J, KADKHODAEI S, HESHMATI M K, et al. Ultrasound-assisted intensification of a hybrid intermittent microwave hot-air drying process of potato: Quality aspects and energy consumption[J]. Ultrasonics,2019,96:104−122. doi: 10.1016/j.ultras.2019.02.005
    [22] RAMIREZ C, ASTORGA V, NUNEZ H, et al. Anomalous diffusion based on fractional calculus approach applied to drying analysis of apple slices: The effects of relative humidity and temperature[J]. Journal of Food Process Engineering,2017,40(5):e12549. doi: 10.1111/jfpe.12549
    [23] 王迪芬, 苑亚, 魏娟, 等. 苹果热风干燥工艺优化和特性分析[J]. 食品工业科技,2021,42(1):144−148,155. [WANG D F, YUAN Y, WEI J, et al. Optimization and characteristic analysis of apple hot-air drying process[J]. Science and Technology of Food Industry,2021,42(1):144−148,155.
    [24] DHURVE P, ARORA V K, YADAV D K, et al. Drying kinetics, mass transfer parameters, and specific energy consumption analysis of watermelon seeds dried using the convective dryer[J]. Mater Today Proceedings,2022,59:926−932. doi: 10.1016/j.matpr.2022.02.008
    [25] MALAKAR S, ARORA V K. Mathematical modeling of drying kinetics of garlic clove in forced convection evacuated tube solar dryer[J]. Advances in Fluid and Thermal Engineering,2021:813−820.
    [26] 兰大为, 赵芳, 王玉清, 等. 热风干燥条件对干燥特性影响及数学模型研究[J]. 内蒙古石油化工,2022,48(4):54−58. [LAN D W, ZHAO F, WANG Y Q, et al. Effect of hot-air drying conditions on drying characteristics and mathematical model[J]. Inner Mongolia Petrochemical Industry,2022,48(4):54−58.
    [27] MUTHUKUMAR P, LAKSHMI D, KOCH P, et al. Effect of drying air temperature on the drying characteristics and quality aspects of black ginger[J]. Journal of Stored Products Research,2022,97:101966. doi: 10.1016/j.jspr.2022.101966
    [28] 王航. 香蕉片高压电场-热泵联合干燥特性研究[D]. 郑州: 中原工学院, 2021.

    WANG H. Study on drying characteristics of banana slices with high pressure electric field and heat pump[D]. Zhengzhou: Zhongyuan University of Technology, 2021.
    [29] 黄光群, 余浩, 方晨, 等. 奶牛粪固形物热风干燥特性及工艺参数优化[J]. 农业工程学报,2021,37(23):186−193. [HUANG G Q, YU H, FANG C, et al. Hot-air drying characteristics and optimization of the process parameters for the solid fraction of dairy manure[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(23):186−193.
    [30] 汤尚文, 马雪伟, 于博, 等. 马铃薯红外干燥特性研究[J]. 保鲜与加工,2018,18(1):76−81,89. [TANG S W, MA X W, YU B, et al. Infrared radiation drying characteristics of potato[J]. Storage and Process,2018,18(1):76−81,89. doi: 10.3969/j.issn.1009-6221.2018.01.013
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-14
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回