Effects of Sodium Citrate, Sodium Tartrate Substitution of Sodium Chloride on the Quality of Squid Surimi Gel
-
摘要: 本文以不同比例柠檬酸钠(Sodium Citrate,SC)和酒石酸钠(Sodium Tartrate,ST)替代氯化钠(Sodium Chloride,NaCl)制备鱿鱼鱼糜凝胶,通过对其胶凝过程、感官特性、理化性质以及蛋白分子特性等分析,探索有机盐替代对鱿鱼鱼糜凝胶品质的影响。结果表明,当柠檬酸钠、酒石酸钠与NaCl的配比为2:1时,鱿鱼鱼糜凝胶强度、硬度、持水性均显著大于(P<0.05)其它复配组。两种有机盐(SC与ST)与NaCl配比结果表明,鱼糜凝胶的弹性和内聚性与鱼糜凝胶强度变化规律一致。盐复配添加使得鱼糜凝胶中疏水相互作用显著(P<0.05)低于对照组,并在SC、ST与NaCl配比为1:1时,疏水相互作用含量分别达至最低值(0.59、0.43 g/L)。流变学结果可以看出,有机盐添加显著缩短(40~57 ℃缩短至40~52 ℃)鱿鱼鱼糜热诱导过程中由于内源性蛋白酶导致的凝胶劣化。鱼糜凝胶的二级结构结果表明SC、ST与NaCl进行复配,α-螺旋和β-折叠含量呈现上升趋势,β-转角含量在复配比1:1时显著(P<0.05)高于对照组。低场核磁共振结果表明有机盐和NaCl的配比为2:1时,鱼糜凝胶相比其他配比组更容易固定水分,并且自由水含量更少。综上,有机盐和NaCl的配比为2:1时,可在一定程度上代替纯有机盐的添加。Abstract: In this study, the squid surimi gel was prepared by sodium citrate (SC) and sodium tartrate (ST) which substituted of sodium chloride (NaCl) in different proportions and the effect of organic salts on the properties changes of squid surimi gel was investigated through rheological properties, physicochemical properties and protein characteristics. From the results, the gel prepared by addition of organic salt and NaCl by the ratio of 2:1 significantly improved (P<0.05) the gel strength, hardness, and water holding capacity compared to other groups. Meanwhile, the elasticity and cohesiveness of surimi gel were consistent with the change trend of surimi gel strength. The mixed addition of organic salts and NaCl inhibited the generation of hydrophobic interactions, and the inhibition effect reached the minimum value of 0.59 g/L (SC) and 0.43 g/L (ST) when the ratio was 1:1. The results of rheological properties demonstrated that the addition of organic salts significantly shortened (40~57 °C to 40~52 °C) the gel degradation due to endogenous proteases during heat process of squid surimi. The secondary structure results showed that the content of α-helix and β-sheet increased when organic salts were added with NaCl, and the relative content of β-turn was significantly (P<0.05) higher than other groups by the ratio of 1:1. The low-field NMR results showed that when the ratio of organic salt and NaCl was 2:1, the gel contained more immobilized water and less free water than the other groups. All results showed that addition of organic salt and NaCl at ratio of 2:1 could keep the high gel quality of squid and provided the scientific basis to prepare the squid products by using organic salts.
-
Key words:
- squid /
- surimi /
- organic salt /
- substitution /
- gel properties
-
表 1 鱼糜凝胶配方
Table 1. Ingredient of surimi gels
处理组(有机盐:NaCl) 2.5%盐(g) 肉(g) 冰水(g) 总量(g) SC(ST) NaCl 1:2 4.17 8.33 426.51 60.99 500 1:1 6.25 6.25 426.51 60.99 500 2:1 8.33 4.17 426.51 60.99 500 表 2 SC和NaCl不同配比下鱿鱼鱼糜凝胶质地特性
Table 2. Texture properties of squid surimi gels with different ratios of SC and NaCl
处理组(有机盐:NaCl) 硬度(N) 粘附性(g·s) 弹性 内聚性 咀嚼性 SC 14.75±0.46a −4.01±0.61a 0.81±0.00b 2.74±0.09a 3326.36±166.79a 1:2 12.41±0.34b −7.24±0.74b 0.82±0.00a 2.62±0.02a 2715.05±65.14b 1:1 12.82±0.38b −7.17±0.86b 0.82±0.00a 2.67±0.11a 2867.15±208.33b 2:1 14.38±0.73a −13.15±0.72c 0.79±0.00c 2.30±0.06b 2668.33±89.79b 注:同列字母不同样品组的质地特性存在显著差异表(P<0.05);表3同。 表 3 ST和NaCl不同配比下鱿鱼鱼糜凝胶质地特性
Table 3. Texture properties of squid surimi gels with different ratios of ST and NaCl
处理组(有机盐:NaCl) 硬度(N) 粘附性(g·s) 弹性 内聚性 咀嚼性 ST 13.56±0.88a −1.92±0.29a 0.81±0.01a 2.91±0.01a 3258.37±181.28a 1:2 11.27±0.70b −13.24±0.66c 0.77±0.00b 2.27±0.10c 2006.89±56.67d 1:1 12.36±0.56ab −7.35±0.55b 0.81±0.01a 2.63±0.09b 2687.67±86.44b 2:1 13.10±0.27a −14.69±1.01d 0.78±0.01b 2.22±0.12c 2318.28±180.24c -
[1] XIE J, TAO L, WU Q, et al. Mercury and selenium in squids from the Pacific Ocean and Indian Ocean: The distribution and human health implications[J]. Marine Pollution Bulletin,2021,173:112926. doi: 10.1016/j.marpolbul.2021.112926 [2] 孔文俊, 刘鑫, 薛勇, 等. 不同蛋白添加剂对秘鲁鱿鱼鱼糜凝胶特性的影响[J]. 食品工业科技,2015,36(14):119−122. [KONG W J, LIU X, XUE Y, et al. Effect of different protein additives on surimi gelation from Peruvian squid surimi[J]. Science and Technology of Food Industry,2015,36(14):119−122. doi: 10.13386/j.issn1002-0306.2015.14.015 [3] 赵艳秋, 刘俊荣, 王伟光, 等. 北太平洋鱿鱼肌肉蛋白质凝胶特性的研究[J]. 水产科学,2009,28(3):122−125. [ZHAO Y Q, LIU J R, WANG W G, et al. Gelling properties of muscle proteins in red oceanic squid[J]. Fisheries Science,2009,28(3):122−125. doi: 10.3969/j.issn.1003-1111.2009.03.002 [4] 徐安琪, 杨镕, 朱煜康, 等. 紫菜粉添加对鱿鱼鱼糜凝胶特性及其蛋白结构的影响[J]. 食品科学,2021,42(2):46−52. [XU A Q, YANG R, ZHU Y K, et al. Effect of laver (Porphyra umbilicalis) powder on gel properties and protein structure of giant squid (Dosidicus gigas) surimi[J]. Food Science,2021,42(2):46−52. doi: 10.7506/spkx1002-6630-20191110-121 [5] 王冬妮, 范馨茹, 祁立波, 等. 淀粉和蛋白类添加物对鱿鱼鱼糜凝胶特性的影响[J]. 中国食品学报,2018,18(4):65−71. [WANG D N, FAN X R, QI L B, et al. Effect of starch and non-muscle protein on gel properties of squid (Illex argentinus) surimi[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(4):65−71. doi: 10.16429/j.1009-7848.2018.04.010 [6] XU C, WANG C, CAI Q, et al. Matrix metalloproteinase 2 (MMP-2) plays a critical role in the softening of common carp muscle during chilled storage by degradation of type I and V collagens[J]. Journal of Agricultural and Food Chemistry, 2015, 63: 10948−10956. [7] PARK S, CHO S, YOSHIOKA T, et al. Influence of endogenous proteases and transglutaminase on thermal gelation of salted squid muscle paste[J]. Journal of Food Science,2003,68:2473−2478. [8] CHU Y J, DENG S G, LV G C, et al. Improvement of gel quality of squid (Dosidicus gigas) meat by using sodium gluconate, sodium citrate, and sodium tartrate[J]. Foods,2022,11(2):73. [9] NYAISABA B M, MIAO W H, HATAB S, et al. Effects of cold atmospheric plasma on squid proteases and gel properties of protein concentrate from squid (Argentinus ilex) mantle[J]. Food Chemistry,2019,291(SEP.1):68−76. [10] 梁高丽, 谢占玲. 微生物源金属蛋白酶的研究进展[J]. 青海畜牧兽医杂志,2017,47(3):45−48. [LIANG G L, XIE Z L. Advances in metalloproteinases from microorganisms[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences,2017,47(3):45−48. doi: 10.3969/j.issn.1003-7950.2017.03.017 [11] 李艳青, 孔保华, 夏秀芳. 鱼糜凝胶形成机理及提高鱼糜凝胶特性的添加物研究新进展[J]. 食品科技,2012,37(7):140−144. [LI Y Q, KONG B H, XIA X F. Gel formation mechanism of surimi and research progress on new additives of enhancing gel properties of surimi[J]. Food Science and Technology,2012,37(7):140−144. doi: 10.13684/j.cnki.spkj.2012.07.068 [12] DEYSI C, HELEN M, MORENO A, et al. Combined effect of high hydrostatic pressure and lysine or cystine addition in low-grade surimi gelation with low salt content[J]. Food and Bioprocess Technology,2016,9(8):1391−1398. doi: 10.1007/s11947-016-1728-8 [13] 汪雪娇. 微波处理对鱼肉制品咸度感知的增强作用与减盐鱼糜的加工适应性[D]. 无锡: 江南大学, 2021.WANG X J. Saltiness perception enhancement of fish products by microwave treatment and processing adaptability in salt-reduced surimi[D]. Wuxi: Jiangnan University, 2021. [14] HUANG J, YE B, WANG W, et al. Incorporation effect of inulin and microbial transglutaminase on the gel properties of silver carp (Hypophthalmichthys molitrix) surimi[J]. Food Meas Charact,2021,15(1):1−11. doi: 10.1007/s11694-020-00604-z [15] MANAT C J, WORAWAN P, SOOTTAWAT B. Physicochemical properties and gel-forming ability of surimi from three species of mackerel caught in Southern Thailand[J]. Food Chemistry,2009,121(1):85−92. [16] 米红波, 王聪, 苏情, 等. 变性淀粉对白鲢鱼鱼糜凝胶特性和蛋白构象的影响[J]. 中国食品学报,2021,21(1):72−80. [MI H B, WANG C, SU Q, et al. Effect of modified starch on gel properties and protein conformation of surimi from sliver carp[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(1):72−80. doi: 10.16429/j.1009-7848.2021.01.009 [17] 罗小迎, 孙晓欢, 戈春东, 等. 斩拌时间和凝胶化时间对微波熟制鱼饼品质的影响[J]. 肉类研究,2019,33(10):22−28. [LUO X Y, SUN X H, GE C D, et al. Effects of chopping time and gelation treatment time on the quality of microwave cooked fish cake[J]. Meat Research,2019,33(10):22−28. [18] GÓMEZ-GUILLÉN M C, BORDERı́AS A J, MONTERO P. Chemical interactions of nonmuscle proteins in the network of sardine (Sardina pilchardus) muscle gels[J]. Food Science and Technology,1997,30(6):602−608. [19] TAN F J, LAI K M, HSU K C. A comparative study on physical properties and chemical interactions of gels from tilapia meat pastes induced by heat and pressure[J]. Journal of Texture Studies,2010,41(2):153−170. doi: 10.1111/j.1745-4603.2010.00219.x [20] XUE S, YANG H, YU X, et al. Applications of high pressure to pre-rigor rabbit muscles affect the water characteristics of myosin gels[J]. Food Chemistry,2018,240:59−66. doi: 10.1016/j.foodchem.2017.07.096 [21] GUO J, ZHOU Y, YANG K, et al. Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins[J]. Food Chemistry,2019,274(15):775−781. [22] 张崟, 曾庆孝, 朱志伟, 等. 柠檬酸盐对罗非鱼鱼糜的凝胶性及抗冻性的影响(英文)[J]. 陕西科技大学学报(自然科学版),2009,27(1):14−19,36. [ZHANG Y, ZENG Q X, ZHU Z W, et al. Effects of trisodium citrate and tricalcium citrate on the gel forming and cryoprotective properies of tilapia (Sarotherodon nilotica) surimi[J]. Journal of Shaanxi University of Science & Technology,2009,27(1):14−19,36. [23] 赵宏蕾, 辛莹, 刘美月, 等. 柠檬酸钠协同碳酸氢钠替代磷酸盐对法兰克福香肠品质的影响[J]. 食品工业科技,2022,43(10):94−103. [ZHAO H L, XIN Y, LIU M Y, et al. Effect of sodium citrate combined with sodium hydrogen carbonate on the quality of phosphate-free frankfurters[J]. Science and Technology of Food Industry,2022,43(10):94−103. [24] 陈海华, 薛长湖. 漂洗条件和热处理对大头狗母鱼鱼糜凝胶特性的影响(英文)[J]. 食品科学,2010,31(3):11−18. [CHEN H H, XUE C H. Effects of washing media and thermal treatment on gel properties of painted lizardfish (Trachinocephalus myops) surimi[J]. Food Science,2010,31(3):11−18. [25] HOLMER S F, KUTZLER L W, MCKEITH F K, et al. Sodium citrate as a replacement for sodium chloride in a brine solution when evaluated in cows of different backfat thickness[J]. Meat Science,2009,81(2):349−356. doi: 10.1016/j.meatsci.2008.08.012 [26] YAN B, JIAO X, ZHU H, et al. Chemical interactions involved in microwave heat-induced surimi gel fortified with fish oil and its formation mechanism[J]. Food Hydrocolloids,2020,105:105779. doi: 10.1016/j.foodhyd.2020.105779 [27] 钟坦君, 洪鹏志, 周春霞, 等. 没食子酸对金线鱼鱼糜凝胶特性及其体外消化产物活性的影响[J]. 食品科学,2022,43(14):76−84. [ZHONG T J, HONG P Z, ZHOU C X, et al. Effect of gallic acid on gel properties and in vitro activity of digested products of Nemipterus virgatus surimi[J]. Food Science,2022,43(14):76−84. doi: 10.7506/spkx1002-6630-20211022-239 [28] ZHANG T, LI Z, WANG Y, et al. Effects of konjac glucomannan on heat-induced changes of physicochemical and structural properties of surimi gels[J]. Food Research International,2016,83:152−161. doi: 10.1016/j.foodres.2016.03.007 [29] XIONG G, CHENG W, YE L, et al. Effects of konjac glucomannan on physicochemical properties of myofibrillar protein and surimi gels from grass carp (Ctenopharyngodon idella)[J]. Food Chemistry,2009,116(2):413−418. doi: 10.1016/j.foodchem.2009.02.056 [30] WANG X, XIA M, ZHOU Y, et al. Gel properties of myofibrillar proteins heated at different heating rates under a low-frequency magnetic field[J]. Food Chemistry,2020,321:126728. doi: 10.1016/j.foodchem.2020.126728 [31] TAN L, TIAN L, ZHANG X, et al. Effects of γ-polyglutamic acid on the physicochemical properties and microstructure of grass carp (Ctenopharyngodon idellus) surimi during frozen storage[J]. LWT-Food Science and Technology,2020,134:109960. doi: 10.1016/j.lwt.2020.109960 [32] GAO Y P, HIDETO F, DENG S G, et al. Effect of pH and heating conditions on the properties of Alaska pollock (Theragra chalcogramma) surimi gel fortified with fish oil[J]. Journal of Texture Studies,2018,49(6):595−603. doi: 10.1111/jtxs.12365 [33] GENG J T, TAKAHASHI K, KAIDO T, et al. The effect of organic salts on the browning of dried squid products processed by air-drying[J]. Food Chemistry,2018,269:212−219. doi: 10.1016/j.foodchem.2018.06.129 [34] LIU R, ZHAO S, XIE B, et al. Contribution of protein conformation and intermolecular bonds to fish and pork gelation properties[J]. Food Hydrocolloids,2011,25(5):898−906. doi: 10.1016/j.foodhyd.2010.08.016 [35] 王红妮, 刘会平, 刘平伟, 等. 糟蛋减压加工过程中蛋黄蛋白质二级结构的变化研究[J]. 现代食品科技,2013,29(6):1262−1265. [WANG H N, LIU H P, LIU P W, et al. Changes in yolk protein secondary structure of the preserved egg in wine during low pressure-vacuum processing[J]. Modern Food Science and Technology,2013,29(6):1262−1265. doi: 10.13982/j.mfst.1673-9078.2013.06.051