Identification Method of Taro (Colocasia esculenta L.) Origin Based on Gas Chromatography-Ion Mobility Spectrometry Technology
-
摘要: 分析不同产地芋头挥发性有机化合物组成差异,并构建芋头产地溯源的可视化指纹图谱。采用气相离子迁移谱法对不同产地芋头的挥发性物质进行测定,结合主成分分析(PCA)实现样品产地的快速区分,进一步筛选芋头中差异挥发性物质。结果表明,在不同产地芋头中,共检测到45个信号峰,鉴定出26种化合物,包括单体和部分化合物的二聚体。主成分分析将芋头分为3类,其中,靖江香沙芋和奉化芋头的挥发性物质较为相似,而与荔浦芋头、沙沟芋头差别很大。异丙醇、2-甲基-乙酸丁酯、辛酸甲酯是区别不同芋头的特征标记物。该方法直观、快速,为地方特色芋头的区分提供了新方法和技术支持。Abstract: To analyze the composition of volatile organic compounds in taro from different origins, and construct visual fingerprint of taro origins. The volatile components of taro from different origins were determined by gas chromatography-ion mobility spectrometry (GC-IMS), and principal component analysis (PCA) could quickly distinguish the differences of volatile components, further screened the different volatile compounds in taro samples. Results showed that, a total of 45 signal peaks were detected in taro from different origins, and 26 compounds were identified, including monomers and dimers of some compounds. Taro samples could be divided into three categories by PCA. Among them, the volatile substances of Jingjiang taro and Fenghua taro were similar, but they were significant different from Lipu taro and Shagou taro. Isopropanol, 2-methyl-butyl acetate and methyl octanoate were regarded as characteristic markers to distinguish different taro samples. This method was intuitive and rapid, and would provide a novel method and technical support for distinguishing local characteristic taro.
-
表 1 芋头产地基本信息
Table 1. Basic information of taro origins
编号 取样地点 样品名称 T1-1 临沂市罗庄区白沙沟村 沙沟芋头 T1-2 临沂市罗庄区唐沙沟村 T1-3 临沂市罗庄区郑旺村 T2-1 靖江市斜桥镇 靖江香沙芋 T2-2 靖江市孤山镇 T2-3 靖江市西来镇 T3-1 宁波市奉化区溪口镇 奉化芋头 T3-2 宁波市奉化区尚田镇 T3-3 宁波市奉化区萧王庙镇 T4-1 荔浦市青山镇 荔浦芋头 T4-2 荔浦市修仁镇 T4-3 荔浦市新坪镇 表 2 HS-GC-IMS技术鉴定芋头样品中挥发性化合物
Table 2. Volatile compounds identified in taro samples by HS-GC-IMS technology
序号 中文名称 英文名称 CAS# 分子式 MW RI RT DT 备注 1 辛酸甲酯 Methyl octanoate C111-11-5 C9H18O2 158.2 1140.5 553.003 1.429 2 己酸甲酯 Methyl hexanoate C106-70-7 C7H14O2 130.2 924 284.075 1.284 M 3 己酸甲酯 Methyl hexanoate C106-70-7 C7H14O2 130.2 923.4 283.565 1.682 D 4 2-甲基-丁酸乙酯 ethyl 2-methylbutyrate C7452-79-1 C7H14O2 130.2 843.4 230.764 1.229 5 2-甲基-丁酸甲酯 methyl 2-methylbutanoate C868-57-5 C6H12O2 116.2 771.7 193.990 1.186 M 6 2-甲基-丁酸甲酯 methyl 2-methylbutanoate C868-57-5 C6H12O2 116.2 768.3 192.608 1.538 D 7 丙酸异丙酯 iso-Propyl propanoate C637-78-5 C6H12O2 116.2 749.9 185.142 1.185 8 丁酸甲酯 Butanoic acid methyl ester C623-42-7 C5H10O2 102.1 717.2 171.871 1.432 9 异丁酸甲酯 methyl 2-methylpropanoate C547-63-7 C5H10O2 102.1 681.3 158.323 1.440 10 2-甲基-乙酸丁酯 Acetic acid, 2-methylbutyl ester C624-41-9 C7H14O2 130.2 880.5 250.671 1.311 M 11 2-甲基-乙酸丁酯 Acetic acid, 2-methylbutyl ester C624-41-9 C7H14O2 130.2 879.3 250.031 1.706 D 12 丁酸乙酯 Ethyl butyrate C105-54-4 C6H12O2 116.2 791.7 203.056 1.208 13 乙酸甲酯 Methyl acetate C79-20-9 C3H6O2 74.1 522.7 115.562 1.035 14 甲酸乙酯 Ethyl formate C109-94-4 C3H6O2 74.1 503.8 110.455 1.068 15 壬醛 Nonanal C124-19-6 C9H18O 142.2 1108.9 507.586 1.475 16 庚醛 Heptanal C111-71-7 C7H14O 114.2 902.5 265.704 1.326 17 己醛 Hexanal C66-25-1 C6H12O 100.2 793.8 204.220 1.254 18 2-甲基丁醛 2-methylbutanal C96-17-3 C5H10O 86.1 661.2 152.909 1.159 19 3-甲基丁醛 3-methylbutanal C590-86-3 C5H10O 86.1 651.4 150.270 1.170 20 α-松油烯 terpinolene C586-62-9 C10H16 136.2 1083.3 470.810 1.223 21 柠檬烯 Limonene C138-86-3 C10H16 136.2 1023.5 384.704 1.223 22 β-吡喃烯 1,2,6,6-tetramethylcyclohexa-1,3-diene C514-96-5 C10H16 136.2 993.6 343.427 1.222 23 (Z)-罗勒烯 Cis-Ocimene C3338-55-4 C10H16 136.2 1034.7 400.884 1.221 24 (E)-罗勒烯 (E)-Ocimene C3779-61-1 C10H16 136.2 1044.4 414.754 1.216 25 2-甲基-1-丁醇 2-methylbutan-1-ol C137-32-6 C5H12O 88.1 734.9 179.059 1.227 26 3-甲基-1-丁醇 3-methylbutan-1-ol C123-51-3 C5H12O 88.1 730.1 177.124 1.241 27 异丙醇 Isopropyl alcohol C67-63-0 C3H8O 60.1 505 110.775 1.092 M 28 异丙醇 Isopropyl alcohol C67-63-0 C3H8O 60.1 506.2 111.094 1.217 D 29 2-庚酮 2-Heptanone C110-43-0 C7H14O 114.2 897.2 261.183 1.263 30 2-己酮 2-Hexanone C591-78-6 C6H12O 100.2 796.9 205.854 1.185 31 未知物1 unidentified − − − 1024.8 386.645 1.356 32 未知物2 unidentified − − − 1066.4 446.399 1.287 33 未知物3 unidentified − − − 779.2 197.031 1.090 34 未知物4 unidentified − − − 695.5 163.098 1.102 35 未知物5 unidentified − − − 739 180.721 1.519 36 未知物6 unidentified − − − 601.4 136.759 1.221 37 未知物7 unidentified − − − 610.6 139.247 1.567 38 未知物8 unidentified − − − 589 133.441 1.591 39 未知物9 unidentified − − − 611.6 139.524 1.290 40 未知物10 unidentified − − − 576.7 130.123 1.139 41 未知物11 unidentified − − − 500.3 109.498 1.169 42 未知物12 unidentified − − − 520.4 114.924 1.266 43 未知物13 unidentified − − − 599.7 136.309 1.321 44 未知物14 unidentified − − − 742 181.951 0.961 45 未知物15 unidentified − − − 604.8 137.705 0.948 注:MW表示化合物分子量;RI表示保留指数;RT表示保留时间(s);DT表示漂移时间(ms);M表示化合物单体;D表示化合物的二聚体。 表 3 不同产地芋头中差异挥发性化合物
Table 3. Volatile differential compounds in taro from different origins
序号 化合物名称 CAS# VIP 香气描述a 1 未知物13 − 2.754 2 己酸甲酯-M C106-70-7 2.631 果香味 3 异丙醇 C67-63-0 2.147 酒味 4 未知物6 − 1.992 5 辛酸甲酯 C111-11-5 1.659 蜡质味 6 未知物14 − 1.586 7 未知物15 − 1.570 2' 己酸甲酯-D C106-70-7 1.506 果香味 8 2-甲基-乙酸丁酯 C624-41-9 1.173 果香味 9 未知物9 − 1.160 10 2-庚酮 C110-43-0 1.070 奶酪味 注:“−”表示无,a表示香气描述参考http://www.thegoodscentscompany.com/search2.html。 -
[1] GONCALVES R, SILVA A, SILVA A, et al. Influence of taro (Colocasia esculenta L. Shott) growth conditions on the phenolic composition and biological properties[J]. Food Chemistry,2013,141(4):3480−3485. doi: 10.1016/j.foodchem.2013.06.009 [2] CHAND N, SUTHAR S, KUMAR K, et al. Enhanced removal of nutrients and coliforms from domestic wastewater in cattle dung biochar-packed Colocasia esculenta-based vertical subsurface flow constructed wetland[J]. Journal of Water Process Engineering,2021,41:101994. doi: 10.1016/j.jwpe.2021.101994 [3] KRISTL J, SEM V, MERGEDUS A, et al. Variation in oxalate content among corm parts, harvest time, and cultivars of taro (Colocasia esculenta (L.) Schott)[J]. Journal of Food Composition and Analysis,2021,102(1):104001. [4] MITHARWAL S, KUMAR A, CHAUHAN K, et al. Nutritional, phytochemical composition and potential health benefits of taro (Colocasia esculenta L.) leaves: A review[J]. Food Chemistry,2022,383:132406. doi: 10.1016/j.foodchem.2022.132406 [5] GOUVEIA C, GANANCA J, LEBOT V, et al. Quantitation of oxalates in corms and shoots of Colocasia esculenta (L.) Schott under drought conditions[J]. Acta Physiologiae Plantarum,2018,40(12):214. doi: 10.1007/s11738-018-2784-7 [6] WANG X, YANG S, HE J, et al. A green triple-locked strategy based on volatile-compound imaging, chemometrics, and markers to discriminate winter honey and sapium honey using headspace gas chromatography-ion mobility spectrometry[J]. Food Research International,2019,119:960−967. doi: 10.1016/j.foodres.2019.01.004 [7] 杨智鹏, 赵文, 魏喜喜, 等. 基于气相离子迁移谱的不同产地枣果挥发性有机物指纹图谱分析[J/OL]. 食品科学: 1−14[2023-03-02]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220715.1009.014.htmlYANG Zhipeng, ZHAO Wen, WEI Xixi, et al. Fingerprint analysis of volatile organic compounds in Jujube from different geographical origins by gas chromatography-ion mobility spectrometry[J]. Food Science: 1−14[2023-03-02]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220715.1009.014.html. [8] 李军山, 高晗, 张浩. 气相离子迁移谱结合化学计量法快速鉴别不同产地连翘[J]. 中国民族民间医药,2021,30(12):47−50,88. [LI Junshan, GAO Han, ZHANG Hao. Identification of Forsythiae fructus from different origins by GC-IMS with chemometrics methods[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy,2021,30(12):47−50,88. [9] 刘振平, 聂青玉, 庞钶靖, 等. 气相离子迁移谱技术鉴别重庆三峡库区特色中蜂蜜研究[J]. 食品与发酵工业,2021,47(22):273−278. [LIU Zhenping, NIE Qingyu, PANG Kejing, et al. Study on the identification of specialty honey of Apis cerana from the three Gorges Reservoir area of Chongqing based on gas chromatography-ion mobility spectrometry[J]. Food and Fermentation Industries,2021,47(22):273−278. doi: 10.13995/j.cnki.11-1802/ts.027151 [10] 郭家刚, 杨松, 丁思年, 等. 基于气相离子迁移谱的不同产地生姜挥发性有机物指纹图谱分析[J]. 食品科学,2021,42(24):236−241. [GUO Jiagang, YANG Song, DING Sinian, et al. Fingerprint analysis of volatile organic compounds in Ginger rhizomes from different geographical origins by gas chromatography-ion mobility spectrometry[J]. Food Science,2021,42(24):236−241. [11] YU H, GUO W, XIE T, et al. Aroma characteristics of traditional Huangjiu produced around Winter Solstice revealed by sensory evaluation, gas chromatography-mass spectrometry and gas chromatography-ion mobility spectrometry[J]. Food Research International,2021,145:110421. doi: 10.1016/j.foodres.2021.110421 [12] XIN A, TANG X, DONG G, et al. Quality assessment of fermented rose jams based on physicochemical properties, HS-GC-MS and HS-GC-IMS[J]. LWT-Food Science and Technology,2021,151:112153. doi: 10.1016/j.lwt.2021.112153 [13] WANG S, CHEN H, SUN B. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS)[J]. Food Chemistry,2020,315:126158. doi: 10.1016/j.foodchem.2019.126158 [14] SONG J, SHAO Y, YAN Y, et al. Characterization of volatile profiles of three colored quinoas based on GC-IMS and PCA[J]. LWT-Food Science and Technology,2021,146:111292. doi: 10.1016/j.lwt.2021.111292 [15] DUAN Z, DONG S, DONG Y, et al. Geographical origin identification of two salmonid species via flavor compound analysis using headspace-gas chromatography-ion mobility spectrometry combined with electronic nose and tongue[J]. Food Research International,2021,145:110385. doi: 10.1016/j.foodres.2021.110385 [16] GERHARDT N, BIRKENMEIER M, SCHWOLOW S, et al. Volatile compound fingerprinting by headspace-gas-chromatography ion-mobility spectrometry (HS-GC-IMS) as a benchtop alternative to 1H NMR profiling for assessment of the authenticity of honey[J]. Analytical Chemistry,2018,90(3):1777−1785. doi: 10.1021/acs.analchem.7b03748 [17] FENG X, WANG H, WANG Z, et al. Discrimination and characterization of the volatile organic compounds in eight kinds of huajiao with geographical indication of China using electronic nose, HS-GC-IMS and HS-SPME-GC-MS[J]. Food Chemistry,2022,375:131671. doi: 10.1016/j.foodchem.2021.131671 [18] GERHARDT N, SCHWOLOW S, ROHN S, et al. Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM[J]. Food Chemistry,2019,278:720−728. doi: 10.1016/j.foodchem.2018.11.095 [19] TIAN X, LI Z, CHAO Y, et al. Evaluation by electronic tongue and headspace-GC-IMS analyses of the flavor compounds in dry-cured pork with different salt content[J]. Food Research International,2020,137:109456. doi: 10.1016/j.foodres.2020.109456 [20] LIU J, YANG J, JIANG C, et al. Volatile organic compound and endogenous phytohormone characteristics during callus browning in Aquilaria sinensis[J]. Industrial Crops and Products,2021,168:113605. doi: 10.1016/j.indcrop.2021.113605 [21] SUN X, GU D, FU Q, et al. Content variations in compositions and volatile component in jujube fruits during the blacking process[J]. Food Science and Nutrition,2019,7(4):1387−1395. doi: 10.1002/fsn3.973 [22] JAROS D, THAMKE I, RADDATZ H, et al. Single-cultivar cloudy juice made from table apples: An attempt to identify the driving force for sensory preference[J]. European Food Research and Technology,2009,229(1):51−61. doi: 10.1007/s00217-009-1025-0 [23] QIN Z, PETERSEN M, BREDIE W. Flavor profiling of apple ciders from the UK and Scandinavian region[J]. Food Research International,2018,105:713−723. doi: 10.1016/j.foodres.2017.12.003 [24] DI CAGNO R, FILANNINO P, GOBBETTI M. Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice[J]. International Journal of Food Microbiology,2017,248:56−62. doi: 10.1016/j.ijfoodmicro.2017.02.014 [25] YUAN B, ZHAO C, YAN M, et al. Influence of gene regulation on rice quality: Impact of storage temperature and humidity on flavor profile[J]. Food Chemistry,2019,283:141−147. doi: 10.1016/j.foodchem.2019.01.042 [26] MARUSIC RADOVCIC N, VIDACEK S, JANCI T, et al. Characterization of volatile compounds, physico-chemical and sensory characteristics of smoked dry-cured ham[J]. Journal of Food Science and Technology,2016,53:4093−4105. doi: 10.1007/s13197-016-2418-2 [27] LAAKSONEN O, KULDJARV R, PAALME T, et al. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders[J]. Food Chemistry,2017,233:29−37. doi: 10.1016/j.foodchem.2017.04.067 [28] CHEN C, LU Y, YU H, et al. Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juice[J]. Food Bioscience,2018,27:30−36. [29] LI M, YANG R, ZHANG H, et al. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer[J]. Food Chemistry,2019,290:32−39. doi: 10.1016/j.foodchem.2019.03.124 [30] LI X, SUN Y, WANG X, et al. Relationship between key environmental factors and profiling of volatile compounds during cucumber fruit development under protected cultivation[J]. Food Chemistry,2019,290:308−315. doi: 10.1016/j.foodchem.2019.03.140 [31] YANG L, LIU J, WANG X, et al. Characterization of volatile component changes in Jujube fruits during cold storage by ising headspace-gas chromatography-ion mobility spectrometry[J]. Molecules,2019,24:3904. doi: 10.3390/molecules24213904 [32] WU Z, CHEN L, WU L, et al. Classification of Chinese honeys according to their floral origins using elemental and stable isotopic compositions[J]. Journal of Agricultural and Food Chemistry,2015,63(22):5388−5394. doi: 10.1021/acs.jafc.5b01576