留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气相离子迁移谱技术的芋头产地鉴别方法

胡航伟 巩敏 梁辰 刘凌霄 王亮 刘云国

胡航伟,巩敏,梁辰,等. 基于气相离子迁移谱技术的芋头产地鉴别方法[J]. 食品工业科技,2023,44(10):297−303. doi: 10.13386/j.issn1002-0306.2022070176
引用本文: 胡航伟,巩敏,梁辰,等. 基于气相离子迁移谱技术的芋头产地鉴别方法[J]. 食品工业科技,2023,44(10):297−303. doi: 10.13386/j.issn1002-0306.2022070176
HU Hangwei, GONG Min, LIANG Chen, et al. Identification Method of Taro (Colocasia esculenta L.) Origin Based on Gas Chromatography-Ion Mobility Spectrometry Technology[J]. Science and Technology of Food Industry, 2023, 44(10): 297−303. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070176
Citation: HU Hangwei, GONG Min, LIANG Chen, et al. Identification Method of Taro (Colocasia esculenta L.) Origin Based on Gas Chromatography-Ion Mobility Spectrometry Technology[J]. Science and Technology of Food Industry, 2023, 44(10): 297−303. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070176

基于气相离子迁移谱技术的芋头产地鉴别方法

doi: 10.13386/j.issn1002-0306.2022070176
基金项目: 山东省高等学校青创人才引育计划创新团队项目(2021QCYY007);山东省重点研发计划(医用食品专项计划)(2019YYSP026)。
详细信息
    作者简介:

    胡航伟(1997−),男,硕士研究生,研究方向:果蔬加工及贮藏,E-mail:hhwwwf1314@163.com

    通讯作者:

    刘云国(1977−),男,博士,教授,研究方向:农产品精深加工及贮藏保鲜,E-mail:yguoliu@163.com

  • 中图分类号: TS255.1

Identification Method of Taro (Colocasia esculenta L.) Origin Based on Gas Chromatography-Ion Mobility Spectrometry Technology

  • 摘要: 分析不同产地芋头挥发性有机化合物组成差异,并构建芋头产地溯源的可视化指纹图谱。采用气相离子迁移谱法对不同产地芋头的挥发性物质进行测定,结合主成分分析(PCA)实现样品产地的快速区分,进一步筛选芋头中差异挥发性物质。结果表明,在不同产地芋头中,共检测到45个信号峰,鉴定出26种化合物,包括单体和部分化合物的二聚体。主成分分析将芋头分为3类,其中,靖江香沙芋和奉化芋头的挥发性物质较为相似,而与荔浦芋头、沙沟芋头差别很大。异丙醇、2-甲基-乙酸丁酯、辛酸甲酯是区别不同芋头的特征标记物。该方法直观、快速,为地方特色芋头的区分提供了新方法和技术支持。

     

  • 图  基于HS-GC-IMS技术不同产地芋头样品的挥发性化合物

    注:A:三维谱图;B:二维俯视谱图;C:差异谱图。

    Figure  1.  Volatile compounds of taro samples in different origins based on HS-GC-IMS technology

    图  不同地理来源的芋头样品指纹图谱

    注:指纹线代表每个芋头样品中的挥发性有机化合物(VOCs),柱代表不同产地芋头样品中的VOC含量。

    Figure  2.  Characteristic fingerprint for taro samples from different geographical origins

    图  不同产地芋头挥发性物质主成分分析

    Figure  3.  Principal component analysis of volatile substances in taro from different origins

    图  不同产地芋头挥发性物质正交偏最小二乘判别分析

    Figure  4.  Orthogonal partial least squares-discriminant analyses of volatile substances in taro from different origins

    图  不同产地芋头差异挥发性物质的载荷图

    Figure  5.  Loadings plot of differential volatile substances of taro samples from different origins

    表  1  芋头产地基本信息

    Table  1.   Basic information of taro origins

    编号取样地点样品名称
    T1-1临沂市罗庄区白沙沟村沙沟芋头
    T1-2临沂市罗庄区唐沙沟村
    T1-3临沂市罗庄区郑旺村
    T2-1靖江市斜桥镇靖江香沙芋
    T2-2靖江市孤山镇
    T2-3靖江市西来镇
    T3-1宁波市奉化区溪口镇奉化芋头
    T3-2宁波市奉化区尚田镇
    T3-3宁波市奉化区萧王庙镇
    T4-1荔浦市青山镇荔浦芋头
    T4-2荔浦市修仁镇
    T4-3荔浦市新坪镇
    下载: 导出CSV

    表  2  HS-GC-IMS技术鉴定芋头样品中挥发性化合物

    Table  2.   Volatile compounds identified in taro samples by HS-GC-IMS technology

    序号中文名称英文名称CAS#分子式MWRIRTDT备注
    1辛酸甲酯Methyl octanoateC111-11-5C9H18O2158.21140.5553.0031.429
    2己酸甲酯Methyl hexanoateC106-70-7C7H14O2130.2924284.0751.284M
    3己酸甲酯Methyl hexanoateC106-70-7C7H14O2130.2923.4283.5651.682D
    42-甲基-丁酸乙酯ethyl 2-methylbutyrateC7452-79-1C7H14O2130.2843.4230.7641.229
    52-甲基-丁酸甲酯methyl 2-methylbutanoateC868-57-5C6H12O2116.2771.7193.9901.186M
    62-甲基-丁酸甲酯methyl 2-methylbutanoateC868-57-5C6H12O2116.2768.3192.6081.538D
    7丙酸异丙酯iso-Propyl propanoateC637-78-5C6H12O2116.2749.9185.1421.185
    8丁酸甲酯Butanoic acid methyl esterC623-42-7C5H10O2102.1717.2171.8711.432
    9异丁酸甲酯methyl 2-methylpropanoateC547-63-7C5H10O2102.1681.3158.3231.440
    102-甲基-乙酸丁酯Acetic acid, 2-methylbutyl esterC624-41-9C7H14O2130.2880.5250.6711.311M
    112-甲基-乙酸丁酯Acetic acid, 2-methylbutyl esterC624-41-9C7H14O2130.2879.3250.0311.706D
    12丁酸乙酯Ethyl butyrateC105-54-4C6H12O2116.2791.7203.0561.208
    13乙酸甲酯Methyl acetateC79-20-9C3H6O274.1522.7115.5621.035
    14甲酸乙酯Ethyl formateC109-94-4C3H6O274.1503.8110.4551.068
    15壬醛NonanalC124-19-6C9H18O142.21108.9507.5861.475
    16庚醛HeptanalC111-71-7C7H14O114.2902.5265.7041.326
    17己醛HexanalC66-25-1C6H12O100.2793.8204.2201.254
    182-甲基丁醛2-methylbutanalC96-17-3C5H10O86.1661.2152.9091.159
    193-甲基丁醛3-methylbutanalC590-86-3C5H10O86.1651.4150.2701.170
    20α-松油烯terpinoleneC586-62-9C10H16136.21083.3470.8101.223
    21柠檬烯LimoneneC138-86-3C10H16136.21023.5384.7041.223
    22β-吡喃烯1,2,6,6-tetramethylcyclohexa-1,3-dieneC514-96-5C10H16136.2993.6343.4271.222
    23(Z)-罗勒烯Cis-OcimeneC3338-55-4C10H16136.21034.7400.8841.221
    24(E)-罗勒烯(E)-OcimeneC3779-61-1C10H16136.21044.4414.7541.216
    252-甲基-1-丁醇2-methylbutan-1-olC137-32-6C5H12O88.1734.9179.0591.227
    263-甲基-1-丁醇3-methylbutan-1-olC123-51-3C5H12O88.1730.1177.1241.241
    27异丙醇Isopropyl alcoholC67-63-0C3H8O60.1505110.7751.092M
    28异丙醇Isopropyl alcoholC67-63-0C3H8O60.1506.2111.0941.217D
    292-庚酮2-HeptanoneC110-43-0C7H14O114.2897.2261.1831.263
    302-己酮2-HexanoneC591-78-6C6H12O100.2796.9205.8541.185
    31未知物1unidentified1024.8386.6451.356
    32未知物2unidentified1066.4446.3991.287
    33未知物3unidentified779.2197.0311.090
    34未知物4unidentified695.5163.0981.102
    35未知物5unidentified739180.7211.519
    36未知物6unidentified601.4136.7591.221
    37未知物7unidentified610.6139.2471.567
    38未知物8unidentified589133.4411.591
    39未知物9unidentified611.6139.5241.290
    40未知物10unidentified576.7130.1231.139
    41未知物11unidentified500.3109.4981.169
    42未知物12unidentified520.4114.9241.266
    43未知物13unidentified599.7136.3091.321
    44未知物14unidentified742181.9510.961
    45未知物15unidentified604.8137.7050.948
    注:MW表示化合物分子量;RI表示保留指数;RT表示保留时间(s);DT表示漂移时间(ms);M表示化合物单体;D表示化合物的二聚体。
    下载: 导出CSV

    表  3  不同产地芋头中差异挥发性化合物

    Table  3.   Volatile differential compounds in taro from different origins

    序号化合物名称CAS#VIP香气描述a
    1未知物132.754
    2己酸甲酯-MC106-70-72.631果香味
    3异丙醇C67-63-02.147酒味
    4未知物61.992
    5辛酸甲酯C111-11-51.659蜡质味
    6未知物141.586
    7未知物151.570
    2'己酸甲酯-DC106-70-71.506果香味
    82-甲基-乙酸丁酯C624-41-91.173果香味
    9未知物91.160
    102-庚酮C110-43-01.070奶酪味
    注:“−”表示无,a表示香气描述参考http://www.thegoodscentscompany.com/search2.html。
    下载: 导出CSV
  • [1] GONCALVES R, SILVA A, SILVA A, et al. Influence of taro (Colocasia esculenta L. Shott) growth conditions on the phenolic composition and biological properties[J]. Food Chemistry,2013,141(4):3480−3485. doi: 10.1016/j.foodchem.2013.06.009
    [2] CHAND N, SUTHAR S, KUMAR K, et al. Enhanced removal of nutrients and coliforms from domestic wastewater in cattle dung biochar-packed Colocasia esculenta-based vertical subsurface flow constructed wetland[J]. Journal of Water Process Engineering,2021,41:101994. doi: 10.1016/j.jwpe.2021.101994
    [3] KRISTL J, SEM V, MERGEDUS A, et al. Variation in oxalate content among corm parts, harvest time, and cultivars of taro (Colocasia esculenta (L.) Schott)[J]. Journal of Food Composition and Analysis,2021,102(1):104001.
    [4] MITHARWAL S, KUMAR A, CHAUHAN K, et al. Nutritional, phytochemical composition and potential health benefits of taro (Colocasia esculenta L.) leaves: A review[J]. Food Chemistry,2022,383:132406. doi: 10.1016/j.foodchem.2022.132406
    [5] GOUVEIA C, GANANCA J, LEBOT V, et al. Quantitation of oxalates in corms and shoots of Colocasia esculenta (L.) Schott under drought conditions[J]. Acta Physiologiae Plantarum,2018,40(12):214. doi: 10.1007/s11738-018-2784-7
    [6] WANG X, YANG S, HE J, et al. A green triple-locked strategy based on volatile-compound imaging, chemometrics, and markers to discriminate winter honey and sapium honey using headspace gas chromatography-ion mobility spectrometry[J]. Food Research International,2019,119:960−967. doi: 10.1016/j.foodres.2019.01.004
    [7] 杨智鹏, 赵文, 魏喜喜, 等. 基于气相离子迁移谱的不同产地枣果挥发性有机物指纹图谱分析[J/OL]. 食品科学: 1−14[2023-03-02]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220715.1009.014.html

    YANG Zhipeng, ZHAO Wen, WEI Xixi, et al. Fingerprint analysis of volatile organic compounds in Jujube from different geographical origins by gas chromatography-ion mobility spectrometry[J]. Food Science: 1−14[2023-03-02]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220715.1009.014.html.
    [8] 李军山, 高晗, 张浩. 气相离子迁移谱结合化学计量法快速鉴别不同产地连翘[J]. 中国民族民间医药,2021,30(12):47−50,88. [LI Junshan, GAO Han, ZHANG Hao. Identification of Forsythiae fructus from different origins by GC-IMS with chemometrics methods[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy,2021,30(12):47−50,88.
    [9] 刘振平, 聂青玉, 庞钶靖, 等. 气相离子迁移谱技术鉴别重庆三峡库区特色中蜂蜜研究[J]. 食品与发酵工业,2021,47(22):273−278. [LIU Zhenping, NIE Qingyu, PANG Kejing, et al. Study on the identification of specialty honey of Apis cerana from the three Gorges Reservoir area of Chongqing based on gas chromatography-ion mobility spectrometry[J]. Food and Fermentation Industries,2021,47(22):273−278. doi: 10.13995/j.cnki.11-1802/ts.027151
    [10] 郭家刚, 杨松, 丁思年, 等. 基于气相离子迁移谱的不同产地生姜挥发性有机物指纹图谱分析[J]. 食品科学,2021,42(24):236−241. [GUO Jiagang, YANG Song, DING Sinian, et al. Fingerprint analysis of volatile organic compounds in Ginger rhizomes from different geographical origins by gas chromatography-ion mobility spectrometry[J]. Food Science,2021,42(24):236−241.
    [11] YU H, GUO W, XIE T, et al. Aroma characteristics of traditional Huangjiu produced around Winter Solstice revealed by sensory evaluation, gas chromatography-mass spectrometry and gas chromatography-ion mobility spectrometry[J]. Food Research International,2021,145:110421. doi: 10.1016/j.foodres.2021.110421
    [12] XIN A, TANG X, DONG G, et al. Quality assessment of fermented rose jams based on physicochemical properties, HS-GC-MS and HS-GC-IMS[J]. LWT-Food Science and Technology,2021,151:112153. doi: 10.1016/j.lwt.2021.112153
    [13] WANG S, CHEN H, SUN B. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS)[J]. Food Chemistry,2020,315:126158. doi: 10.1016/j.foodchem.2019.126158
    [14] SONG J, SHAO Y, YAN Y, et al. Characterization of volatile profiles of three colored quinoas based on GC-IMS and PCA[J]. LWT-Food Science and Technology,2021,146:111292. doi: 10.1016/j.lwt.2021.111292
    [15] DUAN Z, DONG S, DONG Y, et al. Geographical origin identification of two salmonid species via flavor compound analysis using headspace-gas chromatography-ion mobility spectrometry combined with electronic nose and tongue[J]. Food Research International,2021,145:110385. doi: 10.1016/j.foodres.2021.110385
    [16] GERHARDT N, BIRKENMEIER M, SCHWOLOW S, et al. Volatile compound fingerprinting by headspace-gas-chromatography ion-mobility spectrometry (HS-GC-IMS) as a benchtop alternative to 1H NMR profiling for assessment of the authenticity of honey[J]. Analytical Chemistry,2018,90(3):1777−1785. doi: 10.1021/acs.analchem.7b03748
    [17] FENG X, WANG H, WANG Z, et al. Discrimination and characterization of the volatile organic compounds in eight kinds of huajiao with geographical indication of China using electronic nose, HS-GC-IMS and HS-SPME-GC-MS[J]. Food Chemistry,2022,375:131671. doi: 10.1016/j.foodchem.2021.131671
    [18] GERHARDT N, SCHWOLOW S, ROHN S, et al. Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM[J]. Food Chemistry,2019,278:720−728. doi: 10.1016/j.foodchem.2018.11.095
    [19] TIAN X, LI Z, CHAO Y, et al. Evaluation by electronic tongue and headspace-GC-IMS analyses of the flavor compounds in dry-cured pork with different salt content[J]. Food Research International,2020,137:109456. doi: 10.1016/j.foodres.2020.109456
    [20] LIU J, YANG J, JIANG C, et al. Volatile organic compound and endogenous phytohormone characteristics during callus browning in Aquilaria sinensis[J]. Industrial Crops and Products,2021,168:113605. doi: 10.1016/j.indcrop.2021.113605
    [21] SUN X, GU D, FU Q, et al. Content variations in compositions and volatile component in jujube fruits during the blacking process[J]. Food Science and Nutrition,2019,7(4):1387−1395. doi: 10.1002/fsn3.973
    [22] JAROS D, THAMKE I, RADDATZ H, et al. Single-cultivar cloudy juice made from table apples: An attempt to identify the driving force for sensory preference[J]. European Food Research and Technology,2009,229(1):51−61. doi: 10.1007/s00217-009-1025-0
    [23] QIN Z, PETERSEN M, BREDIE W. Flavor profiling of apple ciders from the UK and Scandinavian region[J]. Food Research International,2018,105:713−723. doi: 10.1016/j.foodres.2017.12.003
    [24] DI CAGNO R, FILANNINO P, GOBBETTI M. Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice[J]. International Journal of Food Microbiology,2017,248:56−62. doi: 10.1016/j.ijfoodmicro.2017.02.014
    [25] YUAN B, ZHAO C, YAN M, et al. Influence of gene regulation on rice quality: Impact of storage temperature and humidity on flavor profile[J]. Food Chemistry,2019,283:141−147. doi: 10.1016/j.foodchem.2019.01.042
    [26] MARUSIC RADOVCIC N, VIDACEK S, JANCI T, et al. Characterization of volatile compounds, physico-chemical and sensory characteristics of smoked dry-cured ham[J]. Journal of Food Science and Technology,2016,53:4093−4105. doi: 10.1007/s13197-016-2418-2
    [27] LAAKSONEN O, KULDJARV R, PAALME T, et al. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders[J]. Food Chemistry,2017,233:29−37. doi: 10.1016/j.foodchem.2017.04.067
    [28] CHEN C, LU Y, YU H, et al. Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juice[J]. Food Bioscience,2018,27:30−36.
    [29] LI M, YANG R, ZHANG H, et al. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer[J]. Food Chemistry,2019,290:32−39. doi: 10.1016/j.foodchem.2019.03.124
    [30] LI X, SUN Y, WANG X, et al. Relationship between key environmental factors and profiling of volatile compounds during cucumber fruit development under protected cultivation[J]. Food Chemistry,2019,290:308−315. doi: 10.1016/j.foodchem.2019.03.140
    [31] YANG L, LIU J, WANG X, et al. Characterization of volatile component changes in Jujube fruits during cold storage by ising headspace-gas chromatography-ion mobility spectrometry[J]. Molecules,2019,24:3904. doi: 10.3390/molecules24213904
    [32] WU Z, CHEN L, WU L, et al. Classification of Chinese honeys according to their floral origins using elemental and stable isotopic compositions[J]. Journal of Agricultural and Food Chemistry,2015,63(22):5388−5394. doi: 10.1021/acs.jafc.5b01576
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  44
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-19
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回