留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羧甲基纳米纤维素稳定的低油相Pickering乳液凝胶的制备及性质分析

崔颂 张月 刘超然 王一凡 代蕾

崔颂,张月,刘超然,等. 羧甲基纳米纤维素稳定的低油相Pickering乳液凝胶的制备及性质分析[J]. 食品工业科技,2023,44(10):70−77. doi: 10.13386/j.issn1002-0306.2022070180
引用本文: 崔颂,张月,刘超然,等. 羧甲基纳米纤维素稳定的低油相Pickering乳液凝胶的制备及性质分析[J]. 食品工业科技,2023,44(10):70−77. doi: 10.13386/j.issn1002-0306.2022070180
CUI Song, ZHANG Yue, LIU Chaoran, et al. Preparation and Property Analysis of Carboxymethyl Nanocellulose Stabilized Low Oil Phase Pickering Emulsion Gels[J]. Science and Technology of Food Industry, 2023, 44(10): 70−77. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070180
Citation: CUI Song, ZHANG Yue, LIU Chaoran, et al. Preparation and Property Analysis of Carboxymethyl Nanocellulose Stabilized Low Oil Phase Pickering Emulsion Gels[J]. Science and Technology of Food Industry, 2023, 44(10): 70−77. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070180

羧甲基纳米纤维素稳定的低油相Pickering乳液凝胶的制备及性质分析

doi: 10.13386/j.issn1002-0306.2022070180
基金项目: 山东省自然科学基金(ZR2020QC218);青年人才托举工程(YESS20210248)。
详细信息
    作者简介:

    崔颂(1999−),女,硕士研究生,研究方向:食品科学与工程,E-mail:cuisong2521@163.com

    通讯作者:

    代蕾(1988−),女,博士,教授,研究方向:食品科学,E-mail:dailei508@163.com

  • 中图分类号: TS201.7

Preparation and Property Analysis of Carboxymethyl Nanocellulose Stabilized Low Oil Phase Pickering Emulsion Gels

  • 摘要: 结合pH对羧甲基纳米纤维素(CMCN)的ζ-电位、接触角的影响,本文以CMCN溶液为连续相,玉米油为分散相构建低油相(20%)Pickering乳液凝胶,研究了CMCN稳定的Pickering乳液凝胶的类型、微观结构、流变学特性和不同条件下的稳定性。结果表明:从pH2到pH9,CMCN的ζ-电位从−2 mV减小到−67 mV,其中在pH4时ζ-电位绝对值相对较大且具有最接近90°的接触角,因此pH4时的CMCN更适合稳定低油相Pickering乳液凝胶。荧光显微镜和流变学结果分别证明CMCN稳定的Pickering乳液凝胶为O/W型,且在低油浓度下形成了类弹性结构(G'>G''),为假塑性流体。低油相Pickering乳液凝胶贮藏120 d后仍可保持稳定。在1.3%以上浓度85 ℃加热和pH4以上CMCN稳定的乳液凝胶无分层现象且液滴尺寸变化较小证明其具有优异的pH和热稳定性。本研究制备的低油相Pickering乳液凝胶为绿色新型食品的开发提供了一种新思路,有望解决高油乳液凝胶不利于身体健康的问题。

     

  • 图  CMCN的TEM图

    Figure  1.  TEM image of CMCN

    图  不同pH的CMCN的ζ-电位

    注:不同字母表示差异显著,P<0.05;图5图7同。

    Figure  2.  ζ-Potential of CMCN at different pH

    图  不同pH的CMCN的接触角

    Figure  3.  Contact angle of CMCN with different pH

    图  CMCN稳定Pickering乳液凝胶的荧光显微镜图像

    Figure  4.  Fluorescence microscope image of CMCN stabilized Pickering emulsion gels

    图  不同浓度的CMCN稳定的Pickering乳液凝胶的液滴尺寸和ζ-电位

    注:A为液滴尺寸测量值;B为ζ-电位测量值。

    Figure  5.  Droplet size and ζ-potential of the Pickering emulsion gels stabilized with different concentrations of CMCN

    图  不同浓度的CMCN稳定Pickering乳液凝胶的流变学特性

    注:A为黏度扫描;B为频率扫描。

    Figure  6.  Rheological properties of CMCN stabilized Pickering emulsion gels with different concentrations

    图  不同pH CMCN稳定的Pickering乳液凝胶的液滴尺寸图及外观

    Figure  7.  Droplet size and appearance of Pickering emulsion gels stabilized with different pH CMCN

    图  不同浓度CMCN的稳定的Pickering乳液凝胶的外观图及液滴尺寸

    注:A为新鲜制备的Pickering乳液凝胶;B为室温下放置120 d后的Pickering乳液凝胶;C为Pickering乳液凝胶的液滴尺寸测量结果;不同小写字母为初乳差异显著(P<0.05);不同大写字母为贮藏120 d后差异显著(P<0.05)。

    Figure  8.  Appearance and droplet size of Pickering emulsion gels stabilized with different concentrations of CMCN

    图  Pickering乳液凝胶的热稳定性

    注:A为不同加热温度;B为加热不同浓度。字母不同的值差异有统计学意义(P<0.05),不同大小写字母代表不同样品。

    Figure  9.  Thermal stability of Pickering emulsion gels

    表  1  不同pH的CMCN的接触角

    Table  1.   Contact angle of CMCN at different pH values

    pHpH2pH3pH4pH5pH6pH7pH8pH9
    θo/w47.65±0.75a61.30±0.30b66.25±1.25b57.10±6.90ab63.45±7.35b65.05±0.25b65.85±0.75b59.70±3.60ab
    注:同一行上标字母不同表示差异有统计学意义(P<0.05)。
    下载: 导出CSV

    表  2  不同CMCN浓度的Pickering乳液凝胶的流变学参数

    Table  2.   Rheological parameters of Pickering emulsion gels with different CMCN concentrations

    CMCN浓度1.0%1.1%1.2%1.3%1.4%
    K17.4494823.7315933.8848334.6575953.44787
    n0.308290.247310.233650.21050.18148
    R20.999340.999510.999350.999180.99914
    下载: 导出CSV
  • [1] WEI Y, TONG Z, DAI L, et al. Novel colloidal particles and natural small molecular surfactants co-stabilized Pickering emulsions with hierarchical interfacial structure: Enhanced stability and controllable lipolysis[J]. Journal of Colloid and Interface Science,2020,563:291−307. doi: 10.1016/j.jcis.2019.12.085
    [2] SUN G G, LIU X K, MCClEMENTS D J, et al. Chitin nanofibers improve the stability and functional performance of Pickering emulsions formed from colloidal zein[J]. Journal of Colloid and Interface Science,2021,589:388−400. doi: 10.1016/j.jcis.2021.01.017
    [3] CHANG S Q, CHEN X, LIU S W, et al. Novel gel-like Pickering emulsions stabilized solely by hydrophobic starch nanocrystals[J]. International Journal of Biological Macromolecules,2020,152:703−708. doi: 10.1016/j.ijbiomac.2020.02.175
    [4] URIBE-WANDURRAGA Z N, MARTINEZ-SANCHEZ I, SAVALL C, et al. Microalgae fortification of low-fat oil-in-water food emulsions: An evaluation of the physicochemical and rheological properties[J]. Journal of Food Science and Technology,2021,58(10):3701−3711. doi: 10.1007/s13197-020-04828-1
    [5] ALLAFCHIAN A, HOSSEINI H, GHOREISHI S M. Electrospinning of PVA-carboxymethyl cellulose nanofibers for flufenamic acid drug delivery[J]. International Journal of Biological Macromolecules,2020,163:1780−1786. doi: 10.1016/j.ijbiomac.2020.09.129
    [6] ZHOU Z L, XIA K, LIU T, et al. Preparation of carboxymethyl cellulose nanofibers and their application in warp size of textile[J]. International Journal of Biological Macromolecules,2022,207:40−47. doi: 10.1016/j.ijbiomac.2022.03.003
    [7] WEI J, ZHOU Y, LV Y Y, et al. Carboxymethyl cellulose nanofibrils with a treelike matrix: Preparation and behavior of Pickering emulsions stabilization[J]. ACS Sustainable Chemistry & Engineering,2019,7(15):12887−12896.
    [8] LIU Q, CHANG X, SHAN Y, et al. Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles[J]. Journal of the Science of Food and Agriculture,2021,101(9):3630−3643. doi: 10.1002/jsfa.10992
    [9] LI X M, XIE Q T, ZHU J, et al. Chitosan hydrochloride/carboxymethyl starch complex nanogels as novel Pickering stabilizers: Physical stability and rheological properties[J]. Food Hydrocolloids,2019,93:215−225. doi: 10.1016/j.foodhyd.2019.02.021
    [10] SUN Y, TANG W T, PU C F, et al. Improved stability of liposome-stabilized emulsions as a co-encapsulation delivery system for vitamin B2, vitamin E and β-carotene[J]. Food & Function,2022,13:2966.
    [11] HAN J, CHEN F L, GAO C C, et al. Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles[J]. International Journal of Biological Macromolecules,2020,157:202−211. doi: 10.1016/j.ijbiomac.2020.04.177
    [12] PEI Y Q, WAN J W, YOU M, et al. Impact of whey protein complexation with phytic acid on its emulsification and stabilization properties[J]. Food Hydrocolloids,2019,87:90−96. doi: 10.1016/j.foodhyd.2018.07.034
    [13] NIU F G, LI M Y, HUANG Q, et al. The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance[J]. Carbohydrate Polymers,2017,165:197−204. doi: 10.1016/j.carbpol.2017.02.048
    [14] MIKULCOVA V, BORDES R, ANTONIN M, et al. Pickering oil-in-water emulsions stabilized by carboxylated cellulose nanocrystals-effect of the pH[J]. Food Hydrocolloids,2018,80:60−67. doi: 10.1016/j.foodhyd.2018.01.034
    [15] MICHAEL ESKIN N A, NI Y, DUAN H, et al. The application of cellulose nanocrystals in Pickering emulsion as the particle stabilizer[J]. Science and Technology of Cereals, Oils and Foods,2021,29(3):39−46.
    [16] 焦博, 石爱民, 刘红芝, 等. 基于食品级固体颗粒稳定的Pickering乳液研究进展[J]. 食品科学,2018,39(5):296−303. [JIAO B, SHI A M, LIU H Z, et al. A review on food-grade particle stabilized Pickering emulsion[J]. Food Science,2018,39(5):296−303.
    [17] 程杰, 王彤, 黄云艳, 等. 磁性纤维素微晶稳定O/W型Pickering乳液特性分析[J]. 食品科学,2022,43(2):48−54. [CHENG J, WANG T, HUANG Y Y, et al. Characteristics of magnetic cellulose microcrystalline-stabilized O/W Pickering emulsion[J]. Food Science,2022,43(2):48−54. doi: 10.7506/spkx1002-6630-20201202-031
    [18] 牛云蔚, 高雨辰, 毛铖挺, 等. Pickering乳液的形成、微观结构表征及其在香料香精包埋中的研究进展[J]. 食品与发酵工业,2023,49(1):321−329. [NIU Y W, GAO Y C, MAO C T, et al. A review on formation, microstructure characterization of Pickering emulsion and its encapsulation in flavor and fragrance[J]. Food and Fermentation Industries,2023,49(1):321−329.
    [19] 刘智敏, 尚成新. 羧甲基纤维素稳定的丙烯酸酯乳液的工业研究[J]. 化学工程师,2018,276(9):1−4. [LIU Z M, SHANG C X. Research on the preparation of acrylate emulsion with carboxymethyl cellulose as stabilizer[J]. Chemical Engineer,2018,276(9):1−4.
    [20] 付伟. 细菌纤维素纳米纤维稳定Pickering乳液的研究[D]. 天津: 天津科技大学, 2015

    FU W. Study on Pickering emulsions stabilized by bacterial cellulose nanofiber[D]. Tianjin: Tianjin University of Science and Technology, 2015.
    [21] BORTNOWSKA G, BALEJKO J, TOKARCZYK G, et al. Effects of pregelatinized waxy maize starch on the physicochemical properties and stability of model low-fat oil-in-water food emulsions[J]. Food Hydrocolloids,2014,36:229−237. doi: 10.1016/j.foodhyd.2013.09.012
    [22] 牛付阁, 韩备竞, 寇梦璇, 等. 纳米纤维素颗粒稳定的Pickering乳液的性能研究[J]. 中国食品学报,2020,20(6):166−172. [NIU F G, HAN B J, KOU M X, et al. Studies on characterization of Pickering emulsions stabilized with nanocellulose particles[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(6):166−172. doi: 10.16429/j.1009-7848.2020.06.020
    [23] 汤淼, 陈敏智, 周晓燕. 纤维素基Pickering乳液研究进展[J]. 纤维素科学与技术,2021,29(2):36−47. [TANG M, CHEN M Z, ZHOU X Y. Progress in cellulose-based Pickering emulsions[J]. Journal of Cellulose Science and Technology,2021,29(2):36−47. doi: 10.16561/j.cnki.xws.2021.02.04
    [24] 易辉永, 王世彬, 李帅帅, 等. 纤维素纳米晶杂化压裂液的流变性能[J]. 油田化学,2021,38(2):230−234. [YI H Y, WANG S B, LI S S, et al. Rheological properties of nano hybrid cellulose fracturing fluid[J]. Oilfield Chemistry,2021,38(2):230−234. doi: 10.19346/j.cnki.1000-4092.2021.02.007
    [25] LI S N, ZHANG B, TAN C P, et al. Octenylsuccinate quinoa starch granule-stabilized Pickering emulsion gels: Preparation, microstructure and gelling mechanism[J]. Food Hydrocolloids,2019,91:40−47. doi: 10.1016/j.foodhyd.2019.01.001
    [26] 许馨予, 杨鹄隽, 贾斌, 等. 大豆分离蛋白-高酯柑橘果胶-没食子酸复合Pickering乳液制备及其稳定性分析[J]. 食品科学,2022,43(24):42−51. [XU X Y, YANG H J, JIA B, et al. Preparation and stability analysis of soy protein isolate-high methoxyl citrus pectin-gallic acid Pickering emulsion[J]. Food Science,2022,43(24):42−51.
    [27] ZHU F. Starch based Pickering emulsions: Fabrication, properties, and applications[J]. Trends in Food Science & Technology,2019,85:129−137.
    [28] XIAO J, LI Y Q, HUANG Q R. Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends[J]. Trends in Food Science & Technology,2016,55:48−60.
    [29] DE FARIA J T, DE OLIVEIRA E B, MINMIN V P R, et al. Emulsifying properties of β-lactoglobulin and quillaja bark saponin mixtures: Effects of number of homogenization passes, pH, and NaCl concentration[J]. International Journal of Food Properties,2016,20(7):1643−1654.
    [30] CAI Y J, HUANG L H, TAO X, et al. Carboxymethyl cellulose/okara protein influencing microstructure, rheological properties and stability of O/W emulsions[J]. Journal of the Science of Food and Agriculture,2021,101(9):3685−3692. doi: 10.1002/jsfa.10998
    [31] WEI Y, ZHAN X Y, DAI L, et al. Formation mechanism and environmental stability of whey protein isolate-zein core-shell complex nanoparticles using the pH-shifting method[J]. LWT-Food Science and Technology,2021,139:110605. doi: 10.1016/j.lwt.2020.110605
    [32] LIU G, WANG Q, HU Z Z, et al. Maillard-reacted whey protein isolates and epigallocatechin gallate complex enhance the thermal stability of the Pickering emulsion delivery of curcumin[J]. Journal of Agricultutal and Food Chemistry,2019,67:5212−5220. doi: 10.1021/acs.jafc.9b00950
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-19
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回