Effect of Potassium Ions on the Properties and Mechanism Analysis of Tamarind Gum/Kappa-Carrageenan Composite Gel
-
摘要: 为探究K+对罗望子胶/κ-卡拉胶复合凝胶的特性及机理的影响,本文采用流变学、质构分析、微观结构和红外光谱四种方法,对不同K+添加量的复合凝胶的性能和结构进行研究。流变学结果显示,K+的添加使凝胶体系的模量升高,柔量和总形变量降低,K+添加量增至15 mmol/L时,表观粘度达到最高值2690 Pa·s;质构分析结果显示随K+添加量的增大,凝胶体系强度和硬度增大,但弹性和内聚性相对减少;而红外光谱和微观结构证明了K+可以促进两种凝胶体系之间的相互作用,使凝胶孔隙趋于致密均匀,在K+添加量15 mmol/L时孔径间壁最为规则结实。结果表明,K+的添加能够使凝胶体系表现较好的粘弹性和抗变形性,使网状结构更加紧密,为罗望子胶和κ-卡拉胶的复配应用提供了理论参考。Abstract: To investigate the effect of K+ on the properties and mechanism of the composite gel system consisting of tamarind gum and κ-carrageenan, four methods including rheology, texture analysis, microstructure, and infrared spectroscopy were used to investigate the properties and structure of the composite gel with different K+ additions. The rheological results showed that the addition of K+ increased the modulus of the gel system and decreased the compliance and total deformation. When the addition of K+ increased to 15 mmol/L, the apparent viscosity reached its highest value of 2690 Pa·s. The results of texture analysis revealed that the strength and hardness of the gel system increased with the addition of K+, but its elasticity and cohesiveness decreased relatively. Infrared spectroscopy and microstructure demonstrated that K+ could promote the interaction between tamarind gum and κ-carrageenan, the gel pores tend to be dense and uniform, and the inter-pore walls were most regular and strong at the K+ addition of 15 mmol/L. The results showed that the addition of K+ could make the gel system exhibit better viscoelasticity and anti-deformation, and make the network structure more compact, which would provide a theoretical reference for the application of tamarind gum and κ-carrageenan in compounding.
-
Key words:
- tamarind gum /
- κ-carrageenan /
- gel properties /
- microstructure /
- gelation mechanism
-
表 1 不同K+添加量条件下TSP-KC复合凝胶的质构参数
Table 1. Texture parameters of TSP-KC gels in different K+ additions
K+浓度
(mmol/L)硬度(g) 弹性(mm) 内聚性 0 572.764±69.336a 0.745±0.010c 0.705±0.010b 3 1382.874±178.506b 0.111±0.111a 0.090±0.090a 6 1771.706±141.133b 0.157±0.008ab 0.040±0.022a 9 2456.925±162.043b 0.156±0.047ab 0.100±0.018a 12 2715.792±154.235b 0.152±0.030ab 0.128±0.069a 15 2044.255±165.826b 0.182±0.040ab 0.074±0.044a 20 1734.214±199.230b 0.328±0.156b 0.099±0.064a 注:表中数据为平均值±标准误差,n=3;abc表示组内显著性差异(P<0.05)。 -
[1] 刘爱国, 王思昕, 樊凯凯, 等. 罗望子胶与常用胶体的复配研究[J]. 食品研究与开发,2013,34(15):17−19. [LIU A G, WANG S X, FAN K K, et al. Study on compound of tamarind gum with common thickening agents[J]. Food Research and Development,2013,34(15):17−19. doi: 10.3969/j.issn.1005-6521.2013.15.005 [2] CHAWANANORASEST K, SAENGTONGDEE P, KAEMCHANTUEK P. Extraction and characterization of tamarind (Tamarind indica L.) seed polysaccharides (TSP) from three difference sources[J]. Molecules,2016,21(6):775. doi: 10.3390/molecules21060775 [3] 韩明会, 于海龙, 朱莉伟, 等. 罗望子胶的流变学性质及凝胶特性研究[J]. 中国野生植物资源,2015,34(3):7−11. [HAN M H, YU H L, ZHU L W, et al. Study of rheological properties and gel performance of tamarind gum[J]. Chinese Wild Plant Resources,2015,34(3):7−11. doi: 10.3969/j.issn.1006-9690.2015.03.002 [4] 金明良, 覃小丽, 唐小媛, 等. 含罗望子胶的复配胶在牛奶果冻中的应用[J]. 食品与发酵工业,2017,43(10):131−136. [JIN M L, QIN X L, TANG X Y, et al. Preparationof milk jelly using tamarind compound gums[J]. Food and Fermentation Industry,2017,43(10):131−136. doi: 10.13995/j.cnki.11-1802/ts.014207 [5] 赵陶磊, 聂彩清, 艾连中, 等. 罗望子多糖的结构、功能及其改性修饰研究进展[J]. 食品与发酵科技,2021,57(6):67−76,82. [ZHAO T L, NIE C Q, AI L Z, et al. Research progress on the structure, function and modification of tamarind seed polysaccharide[J]. Food and Fermentation Science and Technology,2021,57(6):67−76,82. doi: 10.3969/j.issn.1674-506X.2021.06-011 [6] 郑瑞峰, 王晓娟, 吴秋艳, 等. 卡拉胶凝胶保水机理及其应用研究[J]. 食品安全导刊,2022(8):186−188. [ZHENG R F, WANG X J, WU Q Y, et al. Study on water retention mechanism of carrageenan gel and its application[J]. Journal of Food Safety,2022(8):186−188. doi: 10.3969/j.issn.1674-0270.2022.8.spaqdk202208065 [7] 詹伟, 袁超, 崔波. 抗性糊精对κ-卡拉胶凝胶特性的影响[J]. 食品工业科技,2021,42(9):19−24. [ZHAN W, YUAN C, CUI B. Effect of resistant dextrins on the gel properties of κ-carrageenan[J]. Science and Technology of Food Industry,2021,42(9):19−24. [8] YUAN C, SANG L Y, WANG Y L, et al. Influence of cyclodextrins on the gel properties of kappa-carrageenan[J]. Food Chemistry,2018,266:545−550. doi: 10.1016/j.foodchem.2018.06.060 [9] SITTICHOKE S, SOOTTAWAT B, YACINE H. Physical and sensory properties of gelatin from seabass (Lates calcarifer) as affected by agar and κ-carrageenan[J]. Journal of Texture Studies,2018,49(1):47−55. doi: 10.1111/jtxs.12280 [10] WEI Y, WANG Y L, HE X J. Gel properties of k-carrageenan-konjac gum mixed gel and their influence factors[J]. Advanced Materials Research,2011,396-398(396-398):1389−1393. [11] XIE F, ZHANG H, XIA Y J, et al. Effects of tamarind seed polysaccharide on gelatinization, rheological, and structural properties of corn starch with different amylose/amylopectin ratios[J]. Food Hydrocolloids,2020,105:105854. doi: 10.1016/j.foodhyd.2020.105854 [12] ZHANG J H, JIANG L, YANG J, et al. Effect of calcium chloride on heat-induced Mesona chinensis polysaccharide-whey protein isolation gels: Gel properties and interactions[J]. LWT,2022,155:112907. doi: 10.1016/j.lwt.2021.112907 [13] LIN L H, SHEN M Y, LIU S C, et al. An acidic heteropolysaccharide from Mesona chinensis: Rheological properties, gelling behavior and texture characteristics[J]. International Journal of Biological Macromolecules,2018,107(Pt B):1591−1598. [14] SHARMA M, MONDAL D, MUKESH C, et al. Preparation of tamarind gum based soft ion gels having thixotropic properties[J]. Carbohydrate Polymers,2014,102:467−471. doi: 10.1016/j.carbpol.2013.11.063 [15] WU D, YU S M, LIANG H S, et al. The influence of deacetylation degree of konjac glucomannan on rheological and gel properties of konjac glucomannan/κ-carrageenan mixed system[J]. Food Hydrocolloids,2020,101(C):105523. [16] 苏一帆, 钱志强, 刘忠. 无机盐对κ-卡拉胶凝胶行为影响的机理[J]. 盐科学与化工,2021,50(8):16−20,33. [SU Y F, QIAN Z Q, LIU Z. Gelation mechanisms of κ-carrageenan in solutionsunder the influence of inorganic salts[J]. Salt Science and Chemistry,2021,50(8):16−20,33. doi: 10.3969/j.issn.2096-3408.2021.08.005 [17] 杜徐楠, 陈改亭, 胡猛, 等. 离子对κ-卡拉胶/刺槐豆胶相互作用的影响研究[J]. 食品科技,2020,45(3):230−239. [DU X N, CHEN C T, HU M, et al. Effect of ions on kappa-carrageenan/locust bean gum interaction[J]. Food Science and Technology,2020,45(3):230−239. [18] 樊蕊. 燕麦β-葡聚糖复合凝胶制备技术及其凝胶机理研究[J]. 食品工业科技,2019,40(18):35−40. [FAN R. Preparation technology of β-glucan composite gel and the analysis of gelation mechanism[J]. Science and Technology of Food Industry,2019,40(18):35−40. [19] WANG W J, JIANG L, REN Y M, et al. Gelling mechanism and interactions of polysaccharides from Mesona blumes: Role of urea and calcium ions[J]. Carbohydrate Polymers,2019,212:270−276. doi: 10.1016/j.carbpol.2019.02.059 [20] WANG N, TIAN J, WANG L L, et al. Fucoidan hydrogels induced by κ-carrageenan: Rheological, thermal and structural characterization[J]. International Journal of Biological Macromolecules,2021,191:514−520. doi: 10.1016/j.ijbiomac.2021.09.111 [21] 任艳艳. κ-卡拉胶/魔芋葡甘聚糖复合水凝胶机械性能强化与表征[D]. 武汉: 华中农业大学, 2020REN Y Y. Enhancement and characterization of κ-carrageenan/ konjac glucomannan compound hydrogels[D]. Wuhan: Huazhong Agricultural University, 2020. [22] 江联. 凉粉草多糖-乳清分离蛋白凝胶体系的凝胶特性和凝胶机理的研究及应用[D]. 南昌: 南昌大学, 2020JIANG L. Mesona chinensis polysaccharide-whey protein isolate gel system: Gel properties, mechanism and its application[D]. Nanchang: Nanchang University, 2020. [23] EVAGELIOU V I, RYAN P M, MORRIS E R. Effect of monovalent cations on calcium-induced assemblies of kappa carrageenan[J]. Food Hydrocolloids,2018,86:141−145. [24] WANG Y L, YUAN C, CUI B, et al. Influence of cations on texture, compressive elastic modulus, sol-gel transition and freeze-thaw properties of kappa-carrageenan gel[J]. Carbohydrate Polymers,2018,202:530−535. doi: 10.1016/j.carbpol.2018.08.146 [25] ALPIZAR-REYES E, CARRILLO-NAVAS H, GALLARDO-RIVERA R, et al. Functional properties and physicochemical characteristics of tamarind (Tamarindus indica L.) seed mucilage powder as a novel hydrocolloid[J]. Journal of Food Engineering,2017,209:68−75. doi: 10.1016/j.jfoodeng.2017.04.021 [26] 刘孝平, 邹雨珂, 刘路, 等. 不同品种罗望子果肉和种子多糖结构及抗氧化活性比较[J]. 南方农业学报,2019,50(8):1807−1813. [LIU X P, ZOU Y K, LIU L, et al. Comparison of structure and antioxidant activity of fruit and seed polysaccharides from different varieties of tamarind[J]. Southern Journal of Agriculture,2019,50(8):1807−1813. doi: 10.3969/j.issn.2095-1191.2019.08.22 [27] 卞紫秀, 董增, 张旭, 等. 海藻酸钠与卡拉胶复合膜的制备及性能[J]. 塑料工业,2018,46(9):39−43. [BIAN Z X, DONG Z, ZHANG X, et al. Preparation and performances of sodium alginate/carrageenan composite packaging filmm[J]. Plastics Industry,2018,46(9):39−43. doi: 10.3969/j.issn.1005-5770.2018.09.010 [28] WEBBER V, CARVALHO S M D, OGLIARI P J, et al. Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology[J]. Food Science and Technology,2012,32(4):812−818. doi: 10.1590/S0101-20612012005000111 [29] RASOOL A, ATA S, ISLAM A, et al. Kinetics and controlled release of lidocaine from novel carrageenan and alginate-based blend hydrogels[J]. International Journal of Biological Macromolecules,2020,147:67−78. doi: 10.1016/j.ijbiomac.2020.01.073 [30] MAKSHAKOVA O N, FAIZULLIN D A, ZUEV Y F. Interplay between secondary structure and ion binding upon thermoreversible gelation of κ-carrageenan[J]. Carbohydrate Polymers,2020,227(C):115342.